Learning 4DVAR inversion directly from observations
- URL: http://arxiv.org/abs/2211.09741v1
- Date: Thu, 17 Nov 2022 18:05:41 GMT
- Title: Learning 4DVAR inversion directly from observations
- Authors: Arthur Filoche and Julien Brajard and Anastase Charantonis and
Dominique B\'er\'eziat
- Abstract summary: We design a hybrid architecture learning the assimilation task directly from partial and noisy observations.
We show in an experiment that the proposed method was able to learn the desired inversion with interesting regularizing properties.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational data assimilation and deep learning share many algorithmic
aspects in common. While the former focuses on system state estimation, the
latter provides great inductive biases to learn complex relationships. We here
design a hybrid architecture learning the assimilation task directly from
partial and noisy observations, using the mechanistic constraint of the 4DVAR
algorithm. Finally, we show in an experiment that the proposed method was able
to learn the desired inversion with interesting regularizing properties and
that it also has computational interests.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Learning Collective Behaviors from Observation [13.278752237440022]
We present a comprehensive examination of learning methodologies employed for the structural identification of dynamical systems.
Our approach not only ensures theoretical convergence guarantees but also exhibits computational efficiency when handling high-dimensional observational data.
arXiv Detail & Related papers (2023-11-01T22:02:08Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Sample-Efficient Reinforcement Learning in the Presence of Exogenous
Information [77.19830787312743]
In real-world reinforcement learning applications the learner's observation space is ubiquitously high-dimensional with both relevant and irrelevant information about the task at hand.
We introduce a new problem setting for reinforcement learning, the Exogenous Decision Process (ExoMDP), in which the state space admits an (unknown) factorization into a small controllable component and a large irrelevant component.
We provide a new algorithm, ExoRL, which learns a near-optimal policy with sample complexity in the size of the endogenous component.
arXiv Detail & Related papers (2022-06-09T05:19:32Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
An online and incremental algorithm capable of learning from a single pass through data, called Incremental Gaussian Mixture Network (IGMN), was employed as a sample-efficient function approximator for the joint state and Q-values space.
Results are analyzed to explain the properties of the obtained algorithm, and it is observed that the use of the IGMN function approximator brings some important advantages to reinforcement learning in relation to conventional neural networks trained by gradient descent methods.
arXiv Detail & Related papers (2020-11-02T03:18:15Z) - Model-Aware Regularization For Learning Approaches To Inverse Problems [11.314492463814817]
We provide an analysis of the generalisation error of deep learning methods applicable to inverse problems.
We propose a 'plug-and-play' regulariser that leverages the knowledge of the forward map to improve the generalization of the network.
We demonstrate the efficacy of our model-aware regularised deep learning algorithms against other state-of-the-art approaches.
arXiv Detail & Related papers (2020-06-18T21:59:03Z) - Joint learning of variational representations and solvers for inverse
problems with partially-observed data [13.984814587222811]
In this paper, we design an end-to-end framework allowing to learn actual variational frameworks for inverse problems in a supervised setting.
The variational cost and the gradient-based solver are both stated as neural networks using automatic differentiation for the latter.
This leads to a data-driven discovery of variational models.
arXiv Detail & Related papers (2020-06-05T19:53:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.