Conffusion: Confidence Intervals for Diffusion Models
- URL: http://arxiv.org/abs/2211.09795v1
- Date: Thu, 17 Nov 2022 18:58:15 GMT
- Title: Conffusion: Confidence Intervals for Diffusion Models
- Authors: Eliahu Horwitz, Yedid Hoshen
- Abstract summary: Current diffusion-based methods do not provide statistical guarantees regarding the generated results.
We propose Conffusion, wherein we fine-tune a pre-trained diffusion model to predict interval bounds in a single forward pass.
We show that Conffusion outperforms the baseline method while being three orders of magnitude faster.
- Score: 32.36217153362305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have become the go-to method for many generative tasks,
particularly for image-to-image generation tasks such as super-resolution and
inpainting. Current diffusion-based methods do not provide statistical
guarantees regarding the generated results, often preventing their use in
high-stakes situations. To bridge this gap, we construct a confidence interval
around each generated pixel such that the true value of the pixel is guaranteed
to fall within the interval with a probability set by the user. Since diffusion
models parametrize the data distribution, a straightforward way of constructing
such intervals is by drawing multiple samples and calculating their bounds.
However, this method has several drawbacks: i) slow sampling speeds ii)
suboptimal bounds iii) requires training a diffusion model per task. To
mitigate these shortcomings we propose Conffusion, wherein we fine-tune a
pre-trained diffusion model to predict interval bounds in a single forward
pass. We show that Conffusion outperforms the baseline method while being three
orders of magnitude faster.
Related papers
- Constrained Diffusion with Trust Sampling [11.354281911272864]
We rethink training-free loss-guided diffusion from an optimization perspective.
Trust sampling effectively balances following the unconditional diffusion model and adhering to the loss guidance.
We demonstrate the efficacy of our method through extensive experiments on complex tasks, and in drastically different domains of images and 3D motion generation.
arXiv Detail & Related papers (2024-11-17T01:34:57Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models [14.859580045688487]
A practical bottleneck of diffusion models is their sampling speed.
We propose a novel framework capable of adaptively allocating compute required for the score estimation.
We show that our method could significantly improve the sampling throughput of the diffusion models without compromising image quality.
arXiv Detail & Related papers (2024-08-12T05:33:45Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
We propose a novel approach that accelerates the sampling of diffusion models by parallelizing the autoregressive process.
Applying these techniques, we introduce ParaTAA, a universal and training-free parallel sampling algorithm.
Our experiments demonstrate that ParaTAA can decrease the inference steps required by common sequential sampling algorithms by a factor of 4$sim$14 times.
arXiv Detail & Related papers (2024-02-15T14:27:58Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.