Exact Quantum Algorithms for Quantum Phase Recognition: Renormalization
Group and Error Correction
- URL: http://arxiv.org/abs/2211.09803v3
- Date: Mon, 10 Jul 2023 02:27:36 GMT
- Title: Exact Quantum Algorithms for Quantum Phase Recognition: Renormalization
Group and Error Correction
- Authors: Ethan Lake, Shankar Balasubramanian, and Soonwon Choi
- Abstract summary: We build quantum algorithms that recognize 1D symmetry-protected topological (SPT) phases protected by finite internal Abelian symmetries.
We discuss the implications of our results in the context of condensed matter physics, machine learning, and near-term quantum algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the relationship between renormalization group (RG) flow and error
correction by constructing quantum algorithms that exactly recognize 1D
symmetry-protected topological (SPT) phases protected by finite internal
Abelian symmetries. For each SPT phase, our algorithm runs a quantum circuit
which emulates RG flow: an arbitrary input ground state wavefunction in the
phase is mapped to a unique minimally-entangled reference state, thereby
allowing for efficient phase identification. This construction is enabled by
viewing a generic input state in the phase as a collection of coherent `errors'
applied to the reference state, and engineering a quantum circuit to
efficiently detect and correct such errors. Importantly, the error correction
threshold is proven to coincide exactly with the phase boundary. We discuss the
implications of our results in the context of condensed matter physics, machine
learning, and near-term quantum algorithms.
Related papers
- Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.
We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.
Our protocol significantly enhances efficiency and precision, opening new avenues in the integration of quantum computing and machine learning.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - The Stability of Gapped Quantum Matter and Error-Correction with
Adiabatic Noise [0.0]
We argue that a quantum code can recover from adiabatic noise channels, corresponding to random adiabatic drift of code states through the phase.
We show examples in which quantum information can be recovered by using stabilizer measurements and Pauli feedback, even up to a phase boundary.
arXiv Detail & Related papers (2024-02-22T19:00:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Learning of error statistics for the detection of quantum phases [0.0]
We show that a neural network trained on the errors can capture the correlation between the errors and can be used to detect the phase boundaries of the gapped quantum phase.
arXiv Detail & Related papers (2022-05-25T18:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Digital quantum simulation of strong correlation effects with iterative
quantum phase estimation over the variational quantum eigensolver algorithm:
$\mathrm{H_4}$ on a circle as a case study [0.0]
We generate the initial state by using the classical-quantum hybrid variational quantum eigensolver algorithm with unitary coupled cluster ansatz.
We demonstrate that a carefully and appropriately prepared initial state can greatly reduce the effects of noise due to sampling in the estimation of the desired eigenphase.
arXiv Detail & Related papers (2021-10-06T15:48:53Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum computing critical exponents [0.0]
We show that the Variational Quantum-Classical Simulation algorithm admits a finite circuit depth scaling collapse when targeting the critical point of the transverse field Ising chain.
The order parameter only collapses on one side of the transition due to a slowdown of the quantum algorithm when crossing the phase transition.
arXiv Detail & Related papers (2021-04-02T17:38:20Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.