Aspects of the phenomenology of interference that are genuinely
nonclassical
- URL: http://arxiv.org/abs/2211.09850v2
- Date: Fri, 3 Nov 2023 17:13:54 GMT
- Title: Aspects of the phenomenology of interference that are genuinely
nonclassical
- Authors: Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, and
Robert W. Spekkens
- Abstract summary: We show that the most basic quantum wave-particle duality relation cannot be reproduced in any noncontextual model.
We also discuss what sorts of interferometric experiment can demonstrate contextuality via the wave-particle duality relation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interference phenomena are often claimed to resist classical explanation.
However, such claims are undermined by the fact that the specific aspects of
the phenomenology upon which they are based can in fact be reproduced in a
noncontextual ontological model [Catani et al., Quantum 7, 1119 (2023)]. This
raises the question of what other aspects of the phenomenology of interference
do in fact resist classical explanation. We answer this question by
demonstrating that the most basic quantum wave-particle duality relation, which
expresses the precise tradeoff between path distinguishability and fringe
visibility, cannot be reproduced in any noncontextual model. We do this by
showing that it is a specific type of uncertainty relation and then leveraging
a recent result establishing that noncontextuality restricts the functional
form of this uncertainty relation [Catani et al., Phys. Rev. Lett. 129, 240401
(2022)]. Finally, we discuss what sorts of interferometric experiment can
demonstrate contextuality via the wave-particle duality relation.
Related papers
- Quantum Non-classicality from Causal Data Fusion [0.8437187555622164]
Bell's theorem shows that quantum correlations are incompatible with a classical theory of cause and effect.
We investigate the problem of causal data fusion that aims to piece together data tables collected under heterogeneous conditions.
We demonstrate the existence of quantum non-classicality resulting from data fusion, even in scenarios where achieving standard Bell non-classicality is impossible.
arXiv Detail & Related papers (2024-05-29T16:35:59Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Entanglement and thermokinetic uncertainty relations in coherent
mesoscopic transport [0.0]
Coherence leads to entanglement and even nonlocality in quantum systems.
Coherence may lead to a suppression of fluctuations, causing violations of thermo-kinetic uncertainty relations.
Our results provide guiding principles for the design of out-of-equilibrium devices that exhibit nonclassical behavior.
arXiv Detail & Related papers (2022-12-07T18:26:00Z) - What is nonclassical about uncertainty relations? [0.0]
Uncertainty relations express limits on the extent to which the outcomes of distinct measurements on a single state can be made jointly predictable.
We show that for a class of theories satisfying a particular symmetry property, the functional form of this predictability tradeoff is constrained by noncontextuality to be below a linear curve.
arXiv Detail & Related papers (2022-07-24T17:19:47Z) - Differential Geometry of Contextuality [0.0]
Contextuality has long been associated with topological properties.
We employ the usual identification of states, effects, and transformations as vectors in a vector space and encode them into a tangent space.
We discuss how the two views for encoding contextuality relate to interpretations of quantum theory.
arXiv Detail & Related papers (2022-02-17T15:49:38Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Nontrivial damping of quantum many-body dynamics [0.0]
We show that a nontrivial damping in the Schr"odinger picture can emerge if the dynamics in the unperturbed system possesses rich features.
We substantiate our theoretical arguments by large-scale numerical simulations of charge transport in the extended Fermi-Hubbard chain.
arXiv Detail & Related papers (2021-03-11T12:58:39Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.