Quantum Non-classicality from Causal Data Fusion
- URL: http://arxiv.org/abs/2405.19252v1
- Date: Wed, 29 May 2024 16:35:59 GMT
- Title: Quantum Non-classicality from Causal Data Fusion
- Authors: Pedro Lauand, Bereket Ngussie Bekele, Elie Wolfe,
- Abstract summary: Bell's theorem shows that quantum correlations are incompatible with a classical theory of cause and effect.
We investigate the problem of causal data fusion that aims to piece together data tables collected under heterogeneous conditions.
We demonstrate the existence of quantum non-classicality resulting from data fusion, even in scenarios where achieving standard Bell non-classicality is impossible.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bell's theorem, a cornerstone of quantum theory, shows that quantum correlations are incompatible with a classical theory of cause and effect. Through the lens of causal inference, it can be understood as a particular case of causal compatibility, which delves into the alignment of observational data with a given causal structure. Here, we explore the problem of causal data fusion that aims to piece together data tables collected under heterogeneous conditions. We investigate the quantum non-classicality that emerges when integrating both passive observations and interventions within an experimental setup. Referred to as "non-classicality from data fusion," this phenomenon is identified and scrutinized across all latent exogenous causal structures involving three observed variables. Notably, we demonstrate the existence of quantum non-classicality resulting from data fusion, even in scenarios where achieving standard Bell non-classicality is impossible. Furthermore, we showcase the potential for attaining non-classicality across multiple interventions using quantum resources. This work extends a more compact parallel letter on the same subject and provides all the required technical proofs.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Nonlocal Locking of Observable Quantities: A Faithful Signature of Nonclassical Correlations [0.0]
We propose a general framework to investigate nonclassical correlations in multipartite quantum states.
We unveil an intriguing phenomenon referred to as nonlocal locking of observable quantities', where the value of an observable quantity gets locked in the correlation of a nonclassical state.
arXiv Detail & Related papers (2024-07-11T08:38:51Z) - Causal Data Fusion with Quantum Confounders [0.8437187555622164]
We show quantum experiments can generate observational and interventional data with a non-classical signature when pieced together that cannot be reproduced classically.
We show that non-classicality genuine to the fusion of multiple data tables is achievable with quantum resources.
Our work shows incorporating interventions can be a powerful tool to detect non-classicality beyond the violation of a standard Bell inequality.
arXiv Detail & Related papers (2024-05-29T17:10:30Z) - Witnessing Non-Classicality in a Simple Causal Structure with Three
Observable Variables [0.7036032466145112]
We analyze the Evans scenario, akin to the causal structure underlying the entanglement-swapping experiment.
We prove that post-quantum correlations, analogous to the paradigmatic Popescu-Rohrlich box, do violate the constraints imposed by a classical description of Evans causal structure.
arXiv Detail & Related papers (2022-11-23T23:29:35Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Experimental test of quantum causal influences [0.6291681227094761]
Quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible.
We experimentally observe this new witness of nonclassicality for the first time.
arXiv Detail & Related papers (2021-08-19T21:47:18Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.