Audio Anti-spoofing Using a Simple Attention Module and Joint
Optimization Based on Additive Angular Margin Loss and Meta-learning
- URL: http://arxiv.org/abs/2211.09898v1
- Date: Thu, 17 Nov 2022 21:25:29 GMT
- Title: Audio Anti-spoofing Using a Simple Attention Module and Joint
Optimization Based on Additive Angular Margin Loss and Meta-learning
- Authors: Zhenyu Wang and John H.L. Hansen
- Abstract summary: This study introduces a simple attention module to infer 3-dim attention weights for the feature map in a convolutional layer.
We propose a joint optimization approach based on the weighted additive angular margin loss for binary classification.
Our proposed approach delivers a competitive result with a pooled EER of 0.99% and min t-DCF of 0.0289.
- Score: 43.519717601587864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic speaker verification systems are vulnerable to a variety of access
threats, prompting research into the formulation of effective spoofing
detection systems to act as a gate to filter out such spoofing attacks. This
study introduces a simple attention module to infer 3-dim attention weights for
the feature map in a convolutional layer, which then optimizes an energy
function to determine each neuron's importance. With the advancement of both
voice conversion and speech synthesis technologies, unseen spoofing attacks are
constantly emerging to limit spoofing detection system performance. Here, we
propose a joint optimization approach based on the weighted additive angular
margin loss for binary classification, with a meta-learning training framework
to develop an efficient system that is robust to a wide range of spoofing
attacks for model generalization enhancement. As a result, when compared to
current state-of-the-art systems, our proposed approach delivers a competitive
result with a pooled EER of 0.99% and min t-DCF of 0.0289.
Related papers
- Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples [33.445126880876415]
We propose a reliable and robust spoofing detection system to filter out spoofing attacks instead of having them reach the automatic speaker verification system.
A weighted additive angular margin loss is proposed to address the data imbalance issue, and different margins has been assigned to improve generalization to unseen spoofing attacks.
We craft adversarial examples by adding imperceptible perturbations to spoofing speech as a data augmentation strategy, then we use an auxiliary batch normalization to guarantee that corresponding normalization statistics are performed exclusively on the adversarial examples.
arXiv Detail & Related papers (2024-08-23T19:26:54Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks.
We propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection.
Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns.
arXiv Detail & Related papers (2024-07-08T09:18:59Z) - ConvNext Based Neural Network for Anti-Spoofing [6.047242590232868]
Automatic speaker verification (ASV) has been widely used in the real life for identity authentication.
With the rapid development of speech conversion, speech algorithms and the improvement of the quality of recording devices, ASV systems are vulnerable for spoof attacks.
arXiv Detail & Related papers (2022-09-14T05:53:37Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Mitigating Closed-model Adversarial Examples with Bayesian Neural
Modeling for Enhanced End-to-End Speech Recognition [18.83748866242237]
We focus on a rigorous and empirical "closed-model adversarial robustness" setting.
We propose an advanced Bayesian neural network (BNN) based adversarial detector.
We improve detection rate by +2.77 to +5.42% (relative +3.03 to +6.26%) and reduce the word error rate by 5.02 to 7.47% on LibriSpeech datasets.
arXiv Detail & Related papers (2022-02-17T09:17:58Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
Crowdsensing systems are vulnerable to various attacks as they build on non-dedicated and ubiquitous properties.
Previous works suggest that GAN-based attacks exhibit more crucial devastation than empirically designed attack samples.
This paper aims to detect intelligently designed illegitimate sensing service requests by integrating a GAN-based model.
arXiv Detail & Related papers (2022-02-16T00:23:25Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.