Contrastive Credibility Propagation for Reliable Semi-Supervised Learning
- URL: http://arxiv.org/abs/2211.09929v4
- Date: Tue, 2 Apr 2024 00:44:45 GMT
- Title: Contrastive Credibility Propagation for Reliable Semi-Supervised Learning
- Authors: Brody Kutt, Pralay Ramteke, Xavier Mignot, Pamela Toman, Nandini Ramanan, Sujit Rokka Chhetri, Shan Huang, Min Du, William Hewlett,
- Abstract summary: We propose Contrastive Credibility Propagation (CCP) for deep SSL via iterative transductive pseudo-label refinement.
CCP unifies semi-supervised learning and noisy label learning for the goal of reliably outperforming a supervised baseline in any data scenario.
- Score: 6.014538614447467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Producing labels for unlabeled data is error-prone, making semi-supervised learning (SSL) troublesome. Often, little is known about when and why an algorithm fails to outperform a supervised baseline. Using benchmark datasets, we craft five common real-world SSL data scenarios: few-label, open-set, noisy-label, and class distribution imbalance/misalignment in the labeled and unlabeled sets. We propose a novel algorithm called Contrastive Credibility Propagation (CCP) for deep SSL via iterative transductive pseudo-label refinement. CCP unifies semi-supervised learning and noisy label learning for the goal of reliably outperforming a supervised baseline in any data scenario. Compared to prior methods which focus on a subset of scenarios, CCP uniquely outperforms the supervised baseline in all scenarios, supporting practitioners when the qualities of labeled or unlabeled data are unknown.
Related papers
- ProtoCon: Pseudo-label Refinement via Online Clustering and Prototypical
Consistency for Efficient Semi-supervised Learning [60.57998388590556]
ProtoCon is a novel method for confidence-based pseudo-labeling.
Online nature of ProtoCon allows it to utilise the label history of the entire dataset in one training cycle.
It delivers significant gains and faster convergence over state-of-the-art datasets.
arXiv Detail & Related papers (2023-03-22T23:51:54Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
We propose a novel unsupervised uncertainty-aware objective that relies on aleatoric and epistemic uncertainty quantification.
Our results outperform the state-of-the-art results on complex datasets such as CIFAR-100 and Mini-ImageNet.
arXiv Detail & Related papers (2022-07-22T00:15:02Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags.
We provide a theoretically grounded approach to LLP based on a reduction to learning with label noise.
Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures.
arXiv Detail & Related papers (2022-03-04T18:52:21Z) - Robust Deep Semi-Supervised Learning: A Brief Introduction [63.09703308309176]
Semi-supervised learning (SSL) aims to improve learning performance by leveraging unlabeled data when labels are insufficient.
SSL with deep models has proven to be successful on standard benchmark tasks.
However, they are still vulnerable to various robustness threats in real-world applications.
arXiv Detail & Related papers (2022-02-12T04:16:41Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
We develop Distribution Aligning Refinery of Pseudo-label (DARP) algorithm.
We show that DARP is provably and efficiently compatible with state-of-the-art SSL schemes.
arXiv Detail & Related papers (2020-07-17T09:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.