論文の概要: Towards Explaining Subjective Ground of Individuals on Social Media
- arxiv url: http://arxiv.org/abs/2211.09953v1
- Date: Fri, 18 Nov 2022 00:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 14:41:47.989408
- Title: Towards Explaining Subjective Ground of Individuals on Social Media
- Title(参考訳): ソーシャルメディア上での個人の主観的立場を説明する
- Authors: Younghun Lee and Dan Goldwasser
- Abstract要約: 本研究は、個人の主観的根拠を学習し、ソーシャルメディアに投稿された他人の状況を判断する神経モデルを提案する。
簡単な注意モジュールと過去の活動を考慮に入れた上で,我々のモデルは,社会的状況を判断する際の個人の主観的嗜好について,人間可読な説明を提供することを実証的に示す。
- 参考スコア(独自算出の注目度): 28.491401997248527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale language models have been reducing the gap between machines and
humans in understanding the real world, yet understanding an individual's
theory of mind and behavior from text is far from being resolved.
This research proposes a neural model -- Subjective Ground Attention -- that
learns subjective grounds of individuals and accounts for their judgments on
situations of others posted on social media. Using simple attention modules as
well as taking one's previous activities into consideration, we empirically
show that our model provides human-readable explanations of an individual's
subjective preference in judging social situations. We further qualitatively
evaluate the explanations generated by the model and claim that our model
learns an individual's subjective orientation towards abstract moral concepts
- Abstract(参考訳): 大規模言語モデルは実世界の理解において機械と人間のギャップを減らしてきたが、個人の心と行動の理論をテキストから理解することは決して解決されていない。
本研究は、個人の主観的根拠を学習し、ソーシャルメディアに投稿された他者の状況について判断するニューラルモデル(主観的基礎的注意)を提案する。
単純な注意モジュールと過去の行動を考慮し,そのモデルが社会的状況の判断において個人の主観的嗜好を人間に読みやすく説明できることを実証的に示す。
さらに,モデルが生成する説明を定性的に評価し,モデルが個人の主観的指向を抽象的道徳概念に学習すると主張する。
関連論文リスト
- Human-like conceptual representations emerge from language prediction [72.5875173689788]
大型言語モデル(LLM)における人間に似た概念表現の出現について検討した。
その結果、LLMは定義記述から概念を推論し、共有された文脈に依存しない構造に収束する表現空間を構築することができた。
我々の研究は、LLMが複雑な人間の認知を理解するための貴重なツールであり、人工知能と人間の知能の整合性を高めるための道を開くという見解を支持している。
論文 参考訳(メタデータ) (2025-01-21T23:54:17Z) - Graphical Perception of Saliency-based Model Explanations [6.936466872687605]
本研究では,視覚認知モデルに対するモデル説明の知覚,特に正当性に基づく説明について検討する。
以上の結果から, 可視化設計決定やアライメントの種類, サリエンシマップの質に関連する要因が, 人間がサリエンシに基づく視覚的説明を知覚する上で重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-06-11T20:29:25Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
確率的目標推論領域における言語駆動の過程と社会的推論への影響について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
論文 参考訳(メタデータ) (2023-06-25T19:38:01Z) - From Outcome-Based to Language-Based Preferences [13.05235037907183]
本稿では,通常のゲームと金銭的な支払いによって記述された社会的相互作用における人間の行動を説明するモデルに関する文献をレビューする。
我々は,行動が記述される言語,特に道徳的懸念を活性化する言語に人々が反応することを示す,成長する研究機関に焦点をあてる。
論文 参考訳(メタデータ) (2022-06-15T05:11:58Z) - Modeling Human Behavior Part I -- Learning and Belief Approaches [0.0]
探索とフィードバックを通じて行動のモデルや方針を学ぶ手法に焦点を当てる。
次世代の自律的適応システムは、主にAIエージェントと人間がチームとして一緒に働く。
論文 参考訳(メタデータ) (2022-05-13T07:33:49Z) - Machine Explanations and Human Understanding [31.047297225560566]
説明は、機械学習モデルの人間の理解を改善すると仮定される。
実験的な研究で 混ざった結果も 否定的な結果も出ています
人間の直観が人間の理解にどのような役割を果たしているかを示す。
論文 参考訳(メタデータ) (2022-02-08T19:00:38Z) - Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and
Reasoning [78.13740873213223]
ボナード問題(BP)は、インテリジェントシステムにおける視覚認知へのインスピレーションとして導入された。
我々は人間レベルの概念学習と推論のための新しいベンチマークBongard-LOGOを提案する。
論文 参考訳(メタデータ) (2020-10-02T03:19:46Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。