Why pseudo label based algorithm is effective? --from the perspective of
pseudo labeled data
- URL: http://arxiv.org/abs/2211.10039v1
- Date: Fri, 18 Nov 2022 05:34:37 GMT
- Title: Why pseudo label based algorithm is effective? --from the perspective of
pseudo labeled data
- Authors: Zeping Min, Cheng Tai
- Abstract summary: We give a theory analysis for why pseudo label based semi-supervised learning is effective in this paper.
Our analysis shows that, firstly, when the amount of unlabeled data tends to infinity, the pseudo label based semi-supervised learning algorithm can obtain model which have the same generalization error upper bound as model obtained by normally training.
More importantly, we prove that when the amount of unlabeled data is large enough, the generalization error upper bound of the model obtained by pseudo label based semi-supervised learning algorithm can converge to the optimal upper bound with linear convergence rate.
- Score: 1.8402019107354282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, pseudo label based semi-supervised learning has achieved great
success in many fields. The core idea of the pseudo label based semi-supervised
learning algorithm is to use the model trained on the labeled data to generate
pseudo labels on the unlabeled data, and then train a model to fit the
previously generated pseudo labels. We give a theory analysis for why pseudo
label based semi-supervised learning is effective in this paper. We mainly
compare the generalization error of the model trained under two settings: (1)
There are N labeled data. (2) There are N unlabeled data and a suitable initial
model. Our analysis shows that, firstly, when the amount of unlabeled data
tends to infinity, the pseudo label based semi-supervised learning algorithm
can obtain model which have the same generalization error upper bound as model
obtained by normally training in the condition of the amount of labeled data
tends to infinity. More importantly, we prove that when the amount of unlabeled
data is large enough, the generalization error upper bound of the model
obtained by pseudo label based semi-supervised learning algorithm can converge
to the optimal upper bound with linear convergence rate. We also give the lower
bound on sampling complexity to achieve linear convergence rate. Our analysis
contributes to understanding the empirical successes of pseudo label-based
semi-supervised learning.
Related papers
- Doubly Robust Self-Training [46.168395767948965]
We introduce doubly robust self-training, a novel semi-supervised algorithm.
We demonstrate the superiority of the doubly robust loss over the standard self-training baseline.
arXiv Detail & Related papers (2023-06-01T00:57:16Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Revisiting Self-Training with Regularized Pseudo-Labeling for Tabular
Data [0.0]
We revisit self-training which can be applied to any kind of algorithm including gradient boosting decision tree.
We propose a novel pseudo-labeling approach that regularizes the confidence scores based on the likelihoods of the pseudo-labels.
arXiv Detail & Related papers (2023-02-27T18:12:56Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
Semi-consuming learning (SSL) can reduce the need for large labelled datasets by incorporating unsupervised data into the training.
Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels.
We use three mechanisms to control pseudo-label noise and errors.
arXiv Detail & Related papers (2022-10-19T09:46:27Z) - How Does Pseudo-Labeling Affect the Generalization Error of the
Semi-Supervised Gibbs Algorithm? [73.80001705134147]
We provide an exact characterization of the expected generalization error (gen-error) for semi-supervised learning (SSL) with pseudo-labeling via the Gibbs algorithm.
The gen-error is expressed in terms of the symmetrized KL information between the output hypothesis, the pseudo-labeled dataset, and the labeled dataset.
arXiv Detail & Related papers (2022-10-15T04:11:56Z) - Learned Label Aggregation for Weak Supervision [8.819582879892762]
We propose a data programming approach that aggregates weak supervision signals to generate labeled data easily.
The quality of the generated labels depends on a label aggregation model that aggregates all noisy labels from all LFs to infer the ground-truth labels.
We show the model can be trained using synthetically generated data and design an effective architecture for the model.
arXiv Detail & Related papers (2022-07-27T14:36:35Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Cross-Model Pseudo-Labeling for Semi-Supervised Action Recognition [98.25592165484737]
We propose a more effective pseudo-labeling scheme, called Cross-Model Pseudo-Labeling (CMPL)
CMPL achieves $17.6%$ and $25.1%$ Top-1 accuracy on Kinetics-400 and UCF-101 using only the RGB modality and $1%$ labeled data, respectively.
arXiv Detail & Related papers (2021-12-17T18:59:41Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
This paper addresses imbalanced semi-supervised learning, where heavily biased pseudo-labels can harm the model performance.
We propose a general pseudo-labeling framework to address the bias motivated by this observation.
We term the novel pseudo-labeling framework for imbalanced SSL as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label.
arXiv Detail & Related papers (2021-06-10T11:58:25Z) - Analysis of label noise in graph-based semi-supervised learning [2.4366811507669124]
In machine learning, one must acquire labels to help supervise a model that will be able to generalize to unseen data.
It is often the case that most of our data is unlabeled.
Semi-supervised learning (SSL) alleviates that by making strong assumptions about the relation between the labels and the input data distribution.
arXiv Detail & Related papers (2020-09-27T22:13:20Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.