Learning from Ambiguous Data with Hard Labels
- URL: http://arxiv.org/abs/2501.01844v2
- Date: Wed, 08 Jan 2025 14:10:15 GMT
- Title: Learning from Ambiguous Data with Hard Labels
- Authors: Zeke Xie, Zheng He, Nan Lu, Lichen Bai, Bao Li, Shuo Yang, Mingming Sun, Ping Li,
- Abstract summary: Real-world data often contains intrinsic ambiguity that the common single-hard-label annotation paradigm ignores.
Standard training using ambiguous data with hard labels may produce overly confident models and thus leading to poor generalization.
We propose a novel framework called Quantized Label Learning (QLL) to alleviate this issue.
- Score: 34.06499138206804
- License:
- Abstract: Real-world data often contains intrinsic ambiguity that the common single-hard-label annotation paradigm ignores. Standard training using ambiguous data with these hard labels may produce overly confident models and thus leading to poor generalization. In this paper, we propose a novel framework called Quantized Label Learning (QLL) to alleviate this issue. First, we formulate QLL as learning from (very) ambiguous data with hard labels: ideally, each ambiguous instance should be associated with a ground-truth soft-label distribution describing its corresponding probabilistic weight in each class, however, this is usually not accessible; in practice, we can only observe a quantized label, i.e., a hard label sampled (quantized) from the corresponding ground-truth soft-label distribution, of each instance, which can be seen as a biased approximation of the ground-truth soft-label. Second, we propose a Class-wise Positive-Unlabeled (CPU) risk estimator that allows us to train accurate classifiers from only ambiguous data with quantized labels. Third, to simulate ambiguous datasets with quantized labels in the real world, we design a mixing-based ambiguous data generation procedure for empirical evaluation. Experiments demonstrate that our CPU method can significantly improve model generalization performance and outperform the baselines.
Related papers
- Label Distribution Learning with Biased Annotations by Learning Multi-Label Representation [120.97262070068224]
Multi-label learning (MLL) has gained attention for its ability to represent real-world data.
Label Distribution Learning (LDL) faces challenges in collecting accurate label distributions.
arXiv Detail & Related papers (2025-02-03T09:04:03Z) - Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
In supervised machine learning, models are typically trained using data with hard labels, i.e., definite assignments of class membership.
We investigate whether incorporating label uncertainty, represented as discrete probability distributions over the class labels, improves the predictive performance of classification models.
arXiv Detail & Related papers (2024-09-24T13:12:29Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - How many labelers do you have? A closer look at gold-standard labels [10.637125300701795]
We show how access to non-aggregated label information can make training well-calibrated models more feasible than it is with gold-standard labels.
We make several predictions for real-world datasets, including when non-aggregate labels should improve learning performance.
arXiv Detail & Related papers (2022-06-24T02:33:50Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
Traditionally, all unannotated labels are assumed as negative labels in single positive multi-label learning (SPML)
We propose entropy-maximization (EM) loss to maximize the entropy of predicted probabilities for all unannotated labels.
Considering the positive-negative label imbalance of unannotated labels, we propose asymmetric pseudo-labeling (APL) with asymmetric-tolerance strategies and a self-paced procedure to provide more precise supervision.
arXiv Detail & Related papers (2022-03-30T11:43:59Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
Label Confusion Model (LCM) learns label confusion to capture semantic overlap among labels.
LCM can generate a better label distribution to replace the original one-hot label vector.
experiments on five text classification benchmark datasets reveal the effectiveness of LCM for several widely used deep learning classification models.
arXiv Detail & Related papers (2020-12-09T11:34:35Z) - Debiased Contrastive Learning [64.98602526764599]
We develop a debiased contrastive objective that corrects for the sampling of same-label datapoints.
Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks.
arXiv Detail & Related papers (2020-07-01T04:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.