Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of
Head and Neck Cancers with PET/CT images
- URL: http://arxiv.org/abs/2211.10138v1
- Date: Fri, 18 Nov 2022 10:31:26 GMT
- Title: Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of
Head and Neck Cancers with PET/CT images
- Authors: Hui Xu and Yihao Li and Wei Zhao and Gwenol\'e Quellec and Lijun Lu
and Mathieu Hatt
- Abstract summary: 3D nnU-Net architecture was adopted to automatic segmentation of primary tumor and lymph nodes synchronously.
Three prognostic models were constructed containing conventional and radiomics features alone.
Dice score and C-index were used as evaluation metrics for segmentation and prognosis task.
- Score: 6.361835964390572
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic segmentation of head and neck cancer (HNC) tumors and lymph nodes
plays a crucial role in the optimization treatment strategy and prognosis
analysis. This study aims to employ nnU-Net for automatic segmentation and
radiomics for recurrence-free survival (RFS) prediction using pretreatment
PET/CT images in multi-center HNC cohort. A multi-center HNC dataset with 883
patients (524 patients for training, 359 for testing) was provided in HECKTOR
2022. A bounding box of the extended oropharyngeal region was retrieved for
each patient with fixed size of 224 x 224 x 224 $mm^{3}$. Then 3D nnU-Net
architecture was adopted to automatic segmentation of primary tumor and lymph
nodes synchronously.Based on predicted segmentation, ten conventional features
and 346 standardized radiomics features were extracted for each patient. Three
prognostic models were constructed containing conventional and radiomics
features alone, and their combinations by multivariate CoxPH modelling. The
statistical harmonization method, ComBat, was explored towards reducing
multicenter variations. Dice score and C-index were used as evaluation metrics
for segmentation and prognosis task, respectively. For segmentation task, we
achieved mean dice score around 0.701 for primary tumor and lymph nodes by 3D
nnU-Net. For prognostic task, conventional and radiomics models obtained the
C-index of 0.658 and 0.645 in the test set, respectively, while the combined
model did not improve the prognostic performance with the C-index of 0.648.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients.
Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis.
We developed a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage.
arXiv Detail & Related papers (2023-09-13T16:59:50Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - MGTUNet: An new UNet for colon nuclei instance segmentation and
quantification [3.693770437824002]
This paper proposes a new UNet model for handling nuclei based on the UNet framework, called MGTUNet.
By comparing the three evaluation metrics and the parameter sizes of the models, MGTUNet obtained 0.6254 on PQ, 0.6359 on mPQ, and 0.8695 on R2.
arXiv Detail & Related papers (2022-10-20T03:00:40Z) - Recurrence-free Survival Prediction under the Guidance of Automatic
Gross Tumor Volume Segmentation for Head and Neck Cancers [8.598790229614071]
We developed an automated primary tumor (GTVp) and lymph nodes (GTVn) segmentation method.
We extracted radiomics features from the segmented tumor volume and constructed a multi-modality tumor recurrence-free survival (RFS) prediction model.
arXiv Detail & Related papers (2022-09-22T18:44:57Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multi-institutional Validation of Two-Streamed Deep Learning Method for
Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and
FDG-PETCT [14.312659667401302]
Current clinical workflow for esophageal gross tumor volume (GTV) contouring relies on manual delineation of high labor-costs and interuser variability.
To validate the clinical applicability of a deep learning (DL) multi-modality esophageal GTV contouring model, developed at 1 institution whereas tested at multiple ones.
arXiv Detail & Related papers (2021-10-11T13:56:09Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.