論文の概要: How Do Input Attributes Impact the Privacy Loss in Differential Privacy?
- arxiv url: http://arxiv.org/abs/2211.10173v1
- Date: Fri, 18 Nov 2022 11:39:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 15:55:01.299488
- Title: How Do Input Attributes Impact the Privacy Loss in Differential Privacy?
- Title(参考訳): 入力属性は、ディファレンシャルプライバシのプライバシー損失にどのように影響するか?
- Authors: Tamara T. Mueller, Stefan Kolek, Friederike Jungmann, Alexander
Ziller, Dmitrii Usynin, Moritz Knolle, Daniel Rueckert and Georgios Kaissis
- Abstract要約: DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
- 参考スコア(独自算出の注目度): 55.492422758737575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy (DP) is typically formulated as a worst-case privacy
guarantee over all individuals in a database. More recently, extensions to
individual subjects or their attributes, have been introduced. Under the
individual/per-instance DP interpretation, we study the connection between the
per-subject gradient norm in DP neural networks and individual privacy loss and
introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS),
which allows one to apportion the subject's privacy loss to their input
attributes. We experimentally show how this enables the identification of
sensitive attributes and of subjects at high risk of data reconstruction.
- Abstract(参考訳): 差分プライバシー(DP)は通常、データベース内のすべての個人に対する最悪のプライバシー保証として定式化される。
近年では、個々の対象または属性への拡張が導入されている。
個人/インスタンスごとのDP解釈では、DPニューラルネットワークにおける対象ごとの勾配規範と個人のプライバシ損失との関係について検討し、プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しいメトリクスを導入し、被験者のプライバシ損失を入力属性に適応させることができる。
本研究では,データ再構成のリスクが高い属性や被写体を識別する方法を実験的に示す。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - Privately Answering Queries on Skewed Data via Per Record Differential Privacy [8.376475518184883]
我々はプライバシ・フォーマリズムを提案し、PzCDP(0集中差分プライバシー)を記録単位とする。
異なるレコードに対して異なるプライバシ損失を提供する他の形式主義とは異なり、PzCDPのプライバシ損失は機密データに明示的に依存する。
論文 参考訳(メタデータ) (2023-10-19T15:24:49Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - "Am I Private and If So, how Many?" -- Using Risk Communication Formats
for Making Differential Privacy Understandable [0.0]
我々は、差別化プライバシのプライバシリスクモデルと合わせて、リスクコミュニケーションフォーマットを適応する。
我々はこれらの新しいプライバシーコミュニケーションフォーマットをクラウドソーシング研究で評価する。
論文 参考訳(メタデータ) (2022-04-08T13:30:07Z) - Privately Publishable Per-instance Privacy [21.775752827149383]
客観的摂動によるパーソナライズドプライバシの損失を,pDP(Per-instance differential privacy)を用いてプライベートに共有する方法を検討する。
客観的な摂動によって学習したプライベートな経験的リスク最小化器をリリースする際のインスタンスごとのプライバシ損失を解析し、プライバシコストをほとんど必要とせず、個人的かつ正確にPDP損失を公表するための一連の方法を提案する。
論文 参考訳(メタデータ) (2021-11-03T15:17:29Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。