How Do Input Attributes Impact the Privacy Loss in Differential Privacy?
- URL: http://arxiv.org/abs/2211.10173v1
- Date: Fri, 18 Nov 2022 11:39:03 GMT
- Title: How Do Input Attributes Impact the Privacy Loss in Differential Privacy?
- Authors: Tamara T. Mueller, Stefan Kolek, Friederike Jungmann, Alexander
Ziller, Dmitrii Usynin, Moritz Knolle, Daniel Rueckert and Georgios Kaissis
- Abstract summary: We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
- Score: 55.492422758737575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy (DP) is typically formulated as a worst-case privacy
guarantee over all individuals in a database. More recently, extensions to
individual subjects or their attributes, have been introduced. Under the
individual/per-instance DP interpretation, we study the connection between the
per-subject gradient norm in DP neural networks and individual privacy loss and
introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS),
which allows one to apportion the subject's privacy loss to their input
attributes. We experimentally show how this enables the identification of
sensitive attributes and of subjects at high risk of data reconstruction.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
This paper adopts Arimoto's $alpha$-Mutual Information as a tunable privacy measure.
We formulate a general distortion-based mechanism that manipulates the original data to offer privacy protection.
arXiv Detail & Related papers (2023-10-27T16:26:14Z) - Privately Answering Queries on Skewed Data via Per Record Differential Privacy [8.376475518184883]
We propose a privacy formalism, per-record zero concentrated differential privacy (PzCDP)
Unlike other formalisms which provide different privacy losses to different records, PzCDP's privacy loss depends explicitly on the confidential data.
arXiv Detail & Related papers (2023-10-19T15:24:49Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - "Am I Private and If So, how Many?" -- Using Risk Communication Formats
for Making Differential Privacy Understandable [0.0]
We adapt risk communication formats in conjunction with a model for the privacy risks of Differential Privacy.
We evaluate these novel privacy communication formats in a crowdsourced study.
arXiv Detail & Related papers (2022-04-08T13:30:07Z) - Privately Publishable Per-instance Privacy [21.775752827149383]
We consider how to privately share the personalized privacy losses incurred by objective perturbation, using per-instance differential privacy (pDP)
We analyze the per-instance privacy loss of releasing a private empirical risk minimizer learned via objective perturbation, and propose a group of methods to privately and accurately publish the pDP losses at little to no additional privacy cost.
arXiv Detail & Related papers (2021-11-03T15:17:29Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
We investigate the impact of each input feature on the individual's privacy loss.
We experimentally evaluate our approach on queries over private databases.
We also explore our findings in the context of neural network training on synthetic data.
arXiv Detail & Related papers (2021-09-22T08:29:16Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.