$\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing
- URL: http://arxiv.org/abs/2310.18241v1
- Date: Fri, 27 Oct 2023 16:26:14 GMT
- Title: $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing
- Authors: MirHamed Jafarzadeh Asl, Mohammadhadi Shateri, Fabrice Labeau
- Abstract summary: This paper adopts Arimoto's $alpha$-Mutual Information as a tunable privacy measure.
We formulate a general distortion-based mechanism that manipulates the original data to offer privacy protection.
- Score: 4.475091558538915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper adopts Arimoto's $\alpha$-Mutual Information as a tunable privacy
measure, in a privacy-preserving data release setting that aims to prevent
disclosing private data to adversaries. By fine-tuning the privacy metric, we
demonstrate that our approach yields superior models that effectively thwart
attackers across various performance dimensions. We formulate a general
distortion-based mechanism that manipulates the original data to offer privacy
protection. The distortion metrics are determined according to the data
structure of a specific experiment. We confront the problem expressed in the
formulation by employing a general adversarial deep learning framework that
consists of a releaser and an adversary, trained with opposite goals. This
study conducts empirical experiments on images and time-series data to verify
the functionality of $\alpha$-Mutual Information. We evaluate the
privacy-utility trade-off of customized models and compare them to mutual
information as the baseline measure. Finally, we analyze the consequence of an
attacker's access to side information about private data and witness that
adapting the privacy measure results in a more refined model than the
state-of-the-art in terms of resiliency against side information.
Related papers
- Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
The study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication.
We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level.
Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset.
arXiv Detail & Related papers (2024-09-05T07:55:55Z) - Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
This study advances the understanding and protection against privacy risks emanating from network structure.
We develop a novel graph private attribute inference attack, which acts as a pivotal tool for evaluating the potential for privacy leakage through network structures.
Our attack model poses a significant threat to user privacy, and our graph data publishing method successfully achieves the optimal privacy-utility trade-off.
arXiv Detail & Related papers (2024-07-26T07:40:54Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
Statistical Disclosure Control aims to minimize the risk of exposing confidential information by de-identifying it.
We outline the current privacy-preserving techniques employed in microdata de-identification, delve into privacy measures tailored for various disclosure scenarios, and assess metrics for information loss and predictive performance.
arXiv Detail & Related papers (2023-12-19T04:23:23Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
We study data reconstruction attacks for discrete data and analyze it under the framework of hypothesis testing.
We show that if the underlying private data takes values from a set of size $M$, then the target privacy parameter $epsilon$ can be $O(log M)$ before the adversary gains significant inferential power.
arXiv Detail & Related papers (2022-10-24T23:50:12Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
New methods designed to preserve data privacy require careful scrutiny.
Failure to preserve privacy is hard to detect, and yet can lead to catastrophic results when a system implementing a privacy-preserving'' method is attacked.
arXiv Detail & Related papers (2022-09-29T17:50:23Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - Personalized PATE: Differential Privacy for Machine Learning with
Individual Privacy Guarantees [1.2691047660244335]
We propose three novel methods to support training an ML model with different personalized privacy guarantees within the training data.
Our experiments show that our personalized privacy methods yield higher accuracy models than the non-personalized baseline.
arXiv Detail & Related papers (2022-02-21T20:16:27Z) - Towards a Data Privacy-Predictive Performance Trade-off [2.580765958706854]
We evaluate the existence of a trade-off between data privacy and predictive performance in classification tasks.
Unlike previous literature, we confirm that the higher the level of privacy, the higher the impact on predictive performance.
arXiv Detail & Related papers (2022-01-13T21:48:51Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.