Leveraging Multi-stream Information Fusion for Trajectory Prediction in
Low-illumination Scenarios: A Multi-channel Graph Convolutional Approach
- URL: http://arxiv.org/abs/2211.10226v1
- Date: Fri, 18 Nov 2022 13:25:15 GMT
- Title: Leveraging Multi-stream Information Fusion for Trajectory Prediction in
Low-illumination Scenarios: A Multi-channel Graph Convolutional Approach
- Authors: Hailong Gong, Zirui Li, Chao Lu, Guodong Du, Jianwei Gong
- Abstract summary: Trajectory prediction is a fundamental problem and challenge for autonomous vehicles.
This paper proposes a novel approach for trajectory prediction in low-illumination scenarios by leveraging multi-stream information fusion.
- Score: 8.671486571411796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is a fundamental problem and challenge for autonomous
vehicles. Early works mainly focused on designing complicated architectures for
deep-learning-based prediction models in normal-illumination environments,
which fail in dealing with low-light conditions. This paper proposes a novel
approach for trajectory prediction in low-illumination scenarios by leveraging
multi-stream information fusion, which flexibly integrates image, optical flow,
and object trajectory information. The image channel employs Convolutional
Neural Network (CNN) and Long Short-term Memory (LSTM) networks to extract
temporal information from the camera. The optical flow channel is applied to
capture the pattern of relative motion between adjacent camera frames and
modelled by Spatial-Temporal Graph Convolutional Network (ST-GCN). The
trajectory channel is used to recognize high-level interactions between
vehicles. Finally, information from all the three channels is effectively fused
in the prediction module to generate future trajectories of surrounding
vehicles in low-illumination conditions. The proposed multi-channel graph
convolutional approach is validated on HEV-I and newly generated Dark-HEV-I,
egocentric vision datasets that primarily focus on urban intersection
scenarios. The results demonstrate that our method outperforms the baselines,
in standard and low-illumination scenarios. Additionally, our approach is
generic and applicable to scenarios with different types of perception data.
The source code of the proposed approach is available at
https://github.com/TommyGong08/MSIF}{https://github.com/TommyGong08/MSIF.
Related papers
- Optical Flow Matters: an Empirical Comparative Study on Fusing Monocular Extracted Modalities for Better Steering [37.46760714516923]
This research introduces a new end-to-end method that exploits multimodal information from a single monocular camera to improve the steering predictions for self-driving cars.
By focusing on the fusion of RGB imagery with depth completion information or optical flow data, we propose a framework that integrates these modalities through both early and hybrid fusion techniques.
arXiv Detail & Related papers (2024-09-18T09:36:24Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Wavelet-Inspired Multiscale Graph Convolutional Recurrent Network for
Traffic Forecasting [0.0]
We propose a Graph Conal Recurrent Network (WavGCRN) which combines multiscale analysis (MSA)-based method with Deep Learning (DL)-based method.
The proposed method can offer well-defined interpretability, powerful learning capability, and competitive forecasting performance on real-world traffic data sets.
arXiv Detail & Related papers (2024-01-11T16:55:48Z) - Hierarchical Graph Pattern Understanding for Zero-Shot VOS [102.21052200245457]
This paper proposes a new hierarchical graph neural network (GNN) architecture for zero-shot video object segmentation (ZS-VOS)
Inspired by the strong ability of GNNs in capturing structural relations, HGPU innovatively leverages motion cues (ie, optical flow) to enhance the high-order representations from the neighbors of target frames.
arXiv Detail & Related papers (2023-12-15T04:13:21Z) - Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
Traffic flow forecasting aims to predict future traffic conditions on the basis of networks and traffic conditions in the past.
The problem is typically solved by modeling complex-temporal correlations in traffic data using far-temporal neural networks (GNNs)
Existing methods follow the paradigm of message passing that aggregates neighborhood information linearly.
In this paper, we propose a model named Dynamic Hyper Structure Learning (DyHSL) for traffic flow prediction.
arXiv Detail & Related papers (2023-09-21T12:44:55Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Cascaded Deep Video Deblurring Using Temporal Sharpness Prior [88.98348546566675]
The proposed algorithm mainly consists of optical flow estimation from intermediate latent frames and latent frame restoration steps.
It first develops a deep CNN model to estimate optical flow from intermediate latent frames and then restores the latent frames based on the estimated optical flow.
We show that exploring the domain knowledge of video deblurring is able to make the deep CNN model more compact and efficient.
arXiv Detail & Related papers (2020-04-06T09:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.