A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field
- URL: http://arxiv.org/abs/2309.10948v1
- Date: Tue, 19 Sep 2023 22:14:52 GMT
- Title: A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field
- Authors: MReza Alipour Sormoli, Amir Samadi, Sajjad Mozaffari, Konstantinos
Koufos, Mehrdad Dianati and Roger Woodman
- Abstract summary: This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
- Score: 12.067838086415833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anticipating the motion of other road users is crucial for automated driving
systems (ADS), as it enables safe and informed downstream decision-making and
motion planning. Unfortunately, contemporary learning-based approaches for
motion prediction exhibit significant performance degradation as the prediction
horizon increases or the observation window decreases. This paper proposes a
novel technique for trajectory prediction that combines a data-driven
learning-based method with a velocity vector field (VVF) generated from a
nature-inspired concept, i.e., fluid flow dynamics. In this work, the vector
field is incorporated as an additional input to a convolutional-recurrent deep
neural network to help predict the most likely future trajectories given a
sequence of bird's eye view scene representations. The performance of the
proposed model is compared with state-of-the-art methods on the HighD dataset
demonstrating that the VVF inclusion improves the prediction accuracy for both
short and long-term (5~sec) time horizons. It is also shown that the accuracy
remains consistent with decreasing observation windows which alleviates the
requirement of a long history of past observations for accurate trajectory
prediction. Source codes are available at:
https://github.com/Amir-Samadi/VVF-TP.
Related papers
- GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
We propose a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction.
GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction.
We show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties.
arXiv Detail & Related papers (2024-04-09T05:51:40Z) - OFMPNet: Deep End-to-End Model for Occupancy and Flow Prediction in Urban Environment [0.0]
We introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment.
We propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error.
arXiv Detail & Related papers (2024-04-02T19:37:58Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - An End-to-End Vehicle Trajcetory Prediction Framework [3.7311680121118345]
An accurate prediction of a future trajectory does not just rely on the previous trajectory, but also a simulation of the complex interactions between other vehicles nearby.
Most state-of-the-art networks built to tackle the problem assume readily available past trajectory points.
We propose a novel end-to-end architecture that takes raw video inputs and outputs future trajectory predictions.
arXiv Detail & Related papers (2023-04-19T15:42:03Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal
Goal Estimation [28.10445924083422]
BiTraP is a goal-conditioned bi-directional multi-modal trajectory prediction method based on the CVAE.
BiTraP generalizes to both first-person view (FPV) and bird's-eye view (BEV) scenarios and outperforms state-of-the-art results by 10-50%.
arXiv Detail & Related papers (2020-07-29T02:40:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.