Efficient quantum implementation of 2+1 U(1) lattice gauge theories with
Gauss law constraints
- URL: http://arxiv.org/abs/2211.10497v1
- Date: Fri, 18 Nov 2022 20:14:15 GMT
- Title: Efficient quantum implementation of 2+1 U(1) lattice gauge theories with
Gauss law constraints
- Authors: Christopher Kane, Dorota M. Grabowska, Benjamin Nachman and Christian
W. Bauer
- Abstract summary: We show how to break the exponential scaling of a naive implementation of a U(1) gauge theory in two spatial dimensions.
We study the errors from finite Suzuki-Trotter time-step, circuit approximation, and quantum noise in a calculation of an explicit observable using IBMQ superconducting qubit hardware.
- Score: 1.5675763601034223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of real-time evolution of lattice quantum field theories using
classical computers is known to scale exponentially with the number of lattice
sites. Due to a fundamentally different computational strategy, quantum
computers hold the promise of allowing for detailed studies of these dynamics
from first principles. However, much like with classical computations, it is
important that quantum algorithms do not have a cost that scales exponentially
with the volume. Recently, it was shown how to break the exponential scaling of
a naive implementation of a U(1) gauge theory in two spatial dimensions through
an operator redefinition. In this work, we describe modifications to how
operators must be sampled in the new operator basis to keep digitization errors
small. We compare the precision of the energies and plaquette expectation value
between the two operator bases and find they are comparable. Additionally, we
provide an explicit circuit construction for the Suzuki-Trotter implementation
of the theory using the Walsh function formalism. The gate count scaling is
studied as a function of the lattice volume, for both exact circuits and
approximate circuits where rotation gates with small arguments have been
dropped. We study the errors from finite Suzuki-Trotter time-step, circuit
approximation, and quantum noise in a calculation of an explicit observable
using IBMQ superconducting qubit hardware. We find the gate count scaling for
the approximate circuits can be further reduced by up to a power of the volume
without introducing larger errors.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Error-corrected Hadamard gate simulated at the circuit level [42.002147097239444]
We simulate the logical Hadamard gate in the surface code under a circuit-level noise model.
Our paper is the first to do this for a unitary gate on a quantum error-correction code.
arXiv Detail & Related papers (2023-12-18T19:00:00Z) - Instantaneous nonlocal quantum computation and circuit depth reduction [7.148511452018054]
Two-party quantum computation is a computation process with bipartite input and output, in which there are initial shared entanglement.
In the first part, we show that a particular simplified subprocedure, known as a garden-hose gadget, cannot significantly reduce the entanglement cost.
In the second part, we show that any unitary circuit consisting of layers of Clifford gates and T gates can be implemented using a circuit with measurements of depth proportional to the T-depth of the original circuit.
arXiv Detail & Related papers (2023-06-15T17:57:50Z) - Comparing planar quantum computing platforms at the quantum speed limit [0.0]
We present a comparison of the theoretical minimal gate time, i.e., the quantum speed limit (QSL) for realistic two- and multi-qubit gate implementations in neutral atoms and superconducting qubits.
We analyze these quantum algorithms in terms of circuit run times and gate counts both in the standard gate model and the parity mapping.
arXiv Detail & Related papers (2023-04-04T12:47:00Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Overcoming exponential volume scaling in quantum simulations of lattice
gauge theories [1.5675763601034223]
We present a formulation of a compact U(1) gauge theory in 2+1 dimensions free of gauge redundancies.
A naive implementation onto a quantum circuit has a gate count that scales exponentially with the volume.
We discuss how to break this exponential scaling by performing an operator redefinition that reduces the non-locality of the Hamiltonian.
arXiv Detail & Related papers (2022-12-09T01:18:46Z) - Quantum State Preparation and Non-Unitary Evolution with Diagonal
Operators [0.0]
We present a dilation based algorithm to simulate non-unitary operations on unitary quantum devices.
We use this algorithm to prepare random sub-normalized two-level states on a quantum device with high fidelity.
We also present the accurate non-unitary dynamics of two-level open quantum systems in a dephasing channel and an amplitude damping channel computed on a quantum device.
arXiv Detail & Related papers (2022-05-05T17:56:41Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.