NVDiff: Graph Generation through the Diffusion of Node Vectors
- URL: http://arxiv.org/abs/2211.10794v2
- Date: Tue, 20 Jun 2023 02:25:58 GMT
- Title: NVDiff: Graph Generation through the Diffusion of Node Vectors
- Authors: Xiaohui Chen, Yukun Li, Aonan Zhang, Li-Ping Liu
- Abstract summary: We propose NVDiff, which takes the VGAE structure and uses a score-based generative model (SGM) as a flexible prior to sample node vectors.
Built on the NVDiff framework, we introduce an attention-based score network capable of capturing both local and global contexts of graphs.
- Score: 20.424372965054832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to generate graphs is challenging as a graph is a set of pairwise
connected, unordered nodes encoding complex combinatorial structures. Recently,
several works have proposed graph generative models based on normalizing flows
or score-based diffusion models. However, these models need to generate nodes
and edges in parallel from the same process, whose dimensionality is
unnecessarily high. We propose NVDiff, which takes the VGAE structure and uses
a score-based generative model (SGM) as a flexible prior to sample node
vectors. By modeling only node vectors in the latent space, NVDiff
significantly reduces the dimension of the diffusion process and thus improves
sampling speed. Built on the NVDiff framework, we introduce an attention-based
score network capable of capturing both local and global contexts of graphs.
Experiments indicate that NVDiff significantly reduces computations and can
model much larger graphs than competing methods. At the same time, it achieves
superior or competitive performances over various datasets compared to previous
methods.
Related papers
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Sparse Training of Discrete Diffusion Models for Graph Generation [45.103518022696996]
We introduce SparseDiff, a novel diffusion model based on the observation that almost all large graphs are sparse.
By selecting a subset of edges, SparseDiff effectively leverages sparse graph representations both during the noising process and within the denoising network.
Our model demonstrates state-of-the-art performance across multiple metrics on both small and large datasets.
arXiv Detail & Related papers (2023-11-03T16:50:26Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - High-Order Pooling for Graph Neural Networks with Tensor Decomposition [23.244580796300166]
Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data.
We propose the Graphized Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions.
arXiv Detail & Related papers (2022-05-24T01:12:54Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
A graph generative model defines a distribution over graphs.
We derive the exact joint probability over the graph and the node ordering of the sequential process.
We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods.
arXiv Detail & Related papers (2021-06-11T06:37:52Z) - Pyramidal Reservoir Graph Neural Network [18.632681846787246]
We propose a deep Graph Neural Network (GNN) model that alternates two types of layers.
We show how graph pooling can reduce the computational complexity of the model.
Our proposed approach to the design of RC-based GNNs offers an advantageous and principled trade-off between accuracy and complexity.
arXiv Detail & Related papers (2021-04-10T08:34:09Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.