Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models
- URL: http://arxiv.org/abs/2211.10807v1
- Date: Sat, 19 Nov 2022 21:42:55 GMT
- Title: Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models
- Authors: Gayda Mutahar, Tim Miller
- Abstract summary: This paper evaluates whether training a decision tree based on concepts extracted from a concept-based explainer can increase interpretability for Convolutional Neural Networks (CNNs) models.
- Score: 4.452019519213712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper evaluates whether training a decision tree based on concepts
extracted from a concept-based explainer can increase interpretability for
Convolutional Neural Networks (CNNs) models and boost the fidelity and
performance of the used explainer. CNNs for computer vision have shown
exceptional performance in critical industries. However, it is a significant
barrier when deploying CNNs due to their complexity and lack of
interpretability. Recent studies to explain computer vision models have shifted
from extracting low-level features (pixel-based explanations) to mid-or
high-level features (concept-based explanations). The current research
direction tends to use extracted features in developing approximation
algorithms such as linear or decision tree models to interpret an original
model. In this work, we modify one of the state-of-the-art concept-based
explanations and propose an alternative framework named TreeICE. We design a
systematic evaluation based on the requirements of fidelity (approximate models
to original model's labels), performance (approximate models to ground-truth
labels), and interpretability (meaningful of approximate models to humans). We
conduct computational evaluation (for fidelity and performance) and human
subject experiments (for interpretability) We find that Tree-ICE outperforms
the baseline in interpretability and generates more human readable explanations
in the form of a semantic tree structure. This work features how important to
have more understandable explanations when interpretability is crucial.
Related papers
- Inherently Interpretable Tree Ensemble Learning [7.868733904112288]
We show that when shallow decision trees are used as base learners, the ensemble learning algorithms can become inherently interpretable.
An interpretation algorithm is developed that converts the tree ensemble into the functional ANOVA representation with inherent interpretability.
Experiments on simulations and real-world datasets show that our proposed methods offer a better trade-off between model interpretation and predictive performance.
arXiv Detail & Related papers (2024-10-24T18:58:41Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
arXiv Detail & Related papers (2024-06-19T06:45:19Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Dynamic Clue Bottlenecks: Towards Interpretable-by-Design Visual Question Answering [58.64831511644917]
We introduce an interpretable by design model that factors model decisions into intermediate human-legible explanations.
We show that our inherently interpretable system can improve 4.64% over a comparable black-box system in reasoning-focused questions.
arXiv Detail & Related papers (2023-05-24T08:33:15Z) - NxPlain: Web-based Tool for Discovery of Latent Concepts [16.446370662629555]
We present NxPlain, a web application that provides an explanation of a model's prediction using latent concepts.
NxPlain discovers latent concepts learned in a deep NLP model, provides an interpretation of the knowledge learned in the model, and explains its predictions based on the used concepts.
arXiv Detail & Related papers (2023-03-06T10:45:24Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
We introduce ADVISE, a new explainability method that quantifies and leverages the relevance of each unit of the feature map to provide better visual explanations.
We extensively evaluate our idea in the image classification task using AlexNet, VGG16, ResNet50, and Xception pretrained on ImageNet.
Our experiments further show that ADVISE fulfils the sensitivity and implementation independence axioms while passing the sanity checks.
arXiv Detail & Related papers (2022-03-02T18:16:57Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors [24.581839689833572]
Convolutional neural network (CNN) models for computer vision are powerful but lack explainability in their most basic form.
Recent work on explanations through feature importance of approximate linear models has moved from input-level features to features from mid-layer feature maps in the form of concept activation vectors (CAVs)
In this work, we rethink the ACE algorithm of Ghorbani etal., proposing an alternative invertible concept-based explanation (ICE) framework to overcome its shortcomings.
arXiv Detail & Related papers (2020-06-27T17:57:26Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
We evaluate the intermediate outputs of NMNs on NLVR2 and DROP datasets.
We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour.
arXiv Detail & Related papers (2020-05-02T06:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.