Reasoning with trees: interpreting CNNs using hierarchies
- URL: http://arxiv.org/abs/2406.13257v1
- Date: Wed, 19 Jun 2024 06:45:19 GMT
- Title: Reasoning with trees: interpreting CNNs using hierarchies
- Authors: Caroline Mazini Rodrigues, Nicolas Boutry, Laurent Najman,
- Abstract summary: We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
- Score: 3.6763102409647526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Challenges persist in providing interpretable explanations for neural network reasoning in explainable AI (xAI). Existing methods like Integrated Gradients produce noisy maps, and LIME, while intuitive, may deviate from the model's reasoning. We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs). Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity and allows both human-centric and model-centric segmentation. This approach offers multiscale explanations, aiding bias identification and enhancing understanding of neural network decision-making. Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations, not only surpassing traditional xAI methods but shedding new light on a novel approach to enhancing xAI interpretability. Code at: https://github.com/CarolMazini/reasoning_with_trees .
Related papers
- Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
This paper evaluates whether training a decision tree based on concepts extracted from a concept-based explainer can increase interpretability for Convolutional Neural Networks (CNNs) models.
arXiv Detail & Related papers (2022-11-19T21:42:55Z) - Greybox XAI: a Neural-Symbolic learning framework to produce
interpretable predictions for image classification [6.940242990198]
Greybox XAI is a framework that composes a DNN and a transparent model thanks to the use of a symbolic Knowledge Base (KB)
We address the problem of the lack of universal criteria for XAI by formalizing what an explanation is.
We show how this new architecture is accurate and explainable in several datasets.
arXiv Detail & Related papers (2022-09-26T08:55:31Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Exploring layerwise decision making in DNNs [1.766593834306011]
We show that by encoding the discrete sample activation values of nodes as a binary representation, we are able to extract a decision tree.
We then combine these decision trees with existing feature attribution techniques in order to produce an interpretation of each layer of a model.
arXiv Detail & Related papers (2022-02-01T11:38:59Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
We propose a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN)
In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process.
Our framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user.
arXiv Detail & Related papers (2021-09-03T09:46:20Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
AI [0.0]
This paper proposes a new explainable convolutional neural network (XCNN) which represents important and driving visual features of stimuli.
The experimental results on the CIFAR-10, Tiny ImageNet, and MNIST datasets showed the success of our algorithm (XCNN) to make CNNs explainable.
arXiv Detail & Related papers (2020-06-19T15:49:39Z) - LIMEtree: Interactively Customisable Explanations Based on Local
Surrogate Multi-output Regression Trees [21.58324172085553]
We introduce a model-agnostic and post-hoc local explainability technique for black-box predictions called LIMEtree.
We validate our algorithm on a deep neural network trained for object detection in images and compare it against Local Interpretable Model-agnostic Explanations (LIME)
Our method comes with local fidelity guarantees and can produce a range of diverse explanation types.
arXiv Detail & Related papers (2020-05-04T12:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.