Traceable and Authenticable Image Tagging for Fake News Detection
- URL: http://arxiv.org/abs/2211.10923v1
- Date: Sun, 20 Nov 2022 09:42:27 GMT
- Title: Traceable and Authenticable Image Tagging for Fake News Detection
- Authors: Ruohan Meng, Zhili Zhou, Qi Cui, Kwok-Yan Lam, Alex Kot
- Abstract summary: We propose a traceable and authenticable image tagging approach that is based on a design of Decoupled Invertible Neural Network (DINN)
The designed DINN can simultaneously embed the dual-tags, textiti.e., authenticable tag and traceable tag, into each news image before publishing, and then separately extract them for authenticity verification and source tracing.
- Score: 10.474778766585848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To prevent fake news images from misleading the public, it is desirable not
only to verify the authenticity of news images but also to trace the source of
fake news, so as to provide a complete forensic chain for reliable fake news
detection. To simultaneously achieve the goals of authenticity verification and
source tracing, we propose a traceable and authenticable image tagging approach
that is based on a design of Decoupled Invertible Neural Network (DINN). The
designed DINN can simultaneously embed the dual-tags, \textit{i.e.},
authenticable tag and traceable tag, into each news image before publishing,
and then separately extract them for authenticity verification and source
tracing. Moreover, to improve the accuracy of dual-tags extraction, we design a
parallel Feature Aware Projection Model (FAPM) to help the DINN preserve
essential tag information. In addition, we define a Distance Metric-Guided
Module (DMGM) that learns asymmetric one-class representations to enable the
dual-tags to achieve different robustness performances under malicious
manipulations. Extensive experiments, on diverse datasets and unseen
manipulations, demonstrate that the proposed tagging approach achieves
excellent performance in the aspects of both authenticity verification and
source tracing for reliable fake news detection and outperforms the prior
works.
Related papers
- FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks [44.54301473673582]
We propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images.
By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods.
arXiv Detail & Related papers (2024-07-07T15:37:02Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - If at First You Don't Succeed, Try, Try Again: Faithful Diffusion-based
Text-to-Image Generation by Selection [53.320946030761796]
diffusion-based text-to-image (T2I) models can lack faithfulness to the text prompt.
We show that large T2I diffusion models are more faithful than usually assumed, and can generate images faithful to even complex prompts.
We introduce a pipeline that generates candidate images for a text prompt and picks the best one according to an automatic scoring system.
arXiv Detail & Related papers (2023-05-22T17:59:41Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
We present a novel method for detecting fake news by fusing multimodal features derived from textual and visual data.
Experimental results showed that our approach performs better than the current state-of-the-art method on a public Twitter dataset by 3.1% accuracy.
arXiv Detail & Related papers (2021-04-23T08:47:54Z) - Supervision by Registration and Triangulation for Landmark Detection [70.13440728689231]
We present Supervision by Registration and Triangulation (SRT), an unsupervised approach that utilizes unlabeled multi-view video to improve the accuracy and precision of landmark detectors.
Being able to utilize unlabeled data enables our detectors to learn from massive amounts of unlabeled data freely available.
arXiv Detail & Related papers (2021-01-25T02:48:21Z) - News Image Steganography: A Novel Architecture Facilitates the Fake News
Identification [52.83247667841588]
A larger portion of fake news quotes untampered images from other sources with ulterior motives.
This paper proposes an architecture named News Image Steganography to reveal the inconsistency through image steganography based on GAN.
arXiv Detail & Related papers (2021-01-03T11:12:23Z) - Learning to Recognize Patch-Wise Consistency for Deepfake Detection [39.186451993950044]
We propose a representation learning approach for this task, called patch-wise consistency learning (PCL)
PCL learns by measuring the consistency of image source features, resulting to representation with good interpretability and robustness to multiple forgery methods.
We evaluate our approach on seven popular Deepfake detection datasets.
arXiv Detail & Related papers (2020-12-16T23:06:56Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
We propose a simple yet effective approach to connect the dots between fact verification and fake news detection.
Our approach makes use of the recent success of fact verification models and enables zero-shot fake news detection.
arXiv Detail & Related papers (2020-10-11T09:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.