FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks
- URL: http://arxiv.org/abs/2407.05412v1
- Date: Sun, 7 Jul 2024 15:37:02 GMT
- Title: FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks
- Authors: Juzheng Miao, Cheng Chen, Keli Zhang, Jie Chuai, Quanzheng Li, Pheng-Ann Heng,
- Abstract summary: We propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images.
By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods.
- Score: 44.54301473673582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One-shot detection of anatomical landmarks is gaining significant attention for its efficiency in using minimal labeled data to produce promising results. However, the success of current methods heavily relies on the employment of extensive unlabeled data to pre-train an effective feature extractor, which limits their applicability in scenarios where a substantial amount of unlabeled data is unavailable. In this paper, we propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images by utilizing solely a single template image without any additional unlabeled data. Specifically, we use the frozen image encoder of visual foundation models as the feature extractor, and introduce dual-branch global and local feature decoders to increase the resolution of extracted features in a coarse to fine manner. The introduced feature decoders are efficiently trained with a distance-aware similarity learning loss to incorporate domain knowledge from the single template image. Moreover, a novel bidirectional matching strategy is developed to improve both robustness and accuracy of landmark detection in the case of scattered similarity map obtained by foundation models. We validate our method on two public anatomical landmark detection datasets. By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods.
Related papers
- Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images [0.8793721044482612]
This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task.
Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection.
This method enables accurate landmark detection with minimal annotated training data.
arXiv Detail & Related papers (2024-07-25T15:32:59Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models.
We present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP.
arXiv Detail & Related papers (2024-06-16T23:55:25Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Weakly-supervised deepfake localization in diffusion-generated images [4.548755617115687]
We propose a weakly-supervised localization problem based on the Xception network as the backbone architecture.
We show that the best performing detection method (based on local scores) is less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.
arXiv Detail & Related papers (2023-11-08T10:27:36Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - One-Shot Medical Landmark Detection [11.213814977894314]
We propose a novel framework named Cascade Comparing to Detect (CC2D) for one-shot landmark detection.
CC2D consists of two stages: 1) Self-supervised learning (CC2D-SSL) and 2) Training with pseudo-labels (CC2D-TPL)
The effectiveness of CC2D is evaluated on a widely-used public dataset of cephalometric landmark detection, which achieves a competitive detection accuracy of 81.01% within 4.0mm.
arXiv Detail & Related papers (2021-03-08T03:16:53Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.