論文の概要: Font Representation Learning via Paired-glyph Matching
- arxiv url: http://arxiv.org/abs/2211.10967v1
- Date: Sun, 20 Nov 2022 12:27:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 20:24:12.213915
- Title: Font Representation Learning via Paired-glyph Matching
- Title(参考訳): ペア化グリフマッチングによるフォント表現学習
- Authors: Junho Cho, Kyuewang Lee, Jin Young Choi
- Abstract要約: 本稿では,フォントスタイルを潜在空間に埋め込む新しいフォント表現学習手法を提案する。
フォントを他者から識別的に表現するために,マッチングに基づくフォント表現学習モデルを提案する。
フォント表現学習方式は,既存のフォント表現学習手法よりも優れた一般化性能が得られることを示す。
- 参考スコア(独自算出の注目度): 15.358456947574913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fonts can convey profound meanings of words in various forms of glyphs.
Without typography knowledge, manually selecting an appropriate font or
designing a new font is a tedious and painful task. To allow users to explore
vast font styles and create new font styles, font retrieval and font style
transfer methods have been proposed. These tasks increase the need for learning
high-quality font representations. Therefore, we propose a novel font
representation learning scheme to embed font styles into the latent space. For
the discriminative representation of a font from others, we propose a
paired-glyph matching-based font representation learning model that attracts
the representations of glyphs in the same font to one another, but pushes away
those of other fonts. Through evaluations on font retrieval with query glyphs
on new fonts, we show our font representation learning scheme achieves better
generalization performance than the existing font representation learning
techniques. Finally on the downstream font style transfer and generation tasks,
we confirm the benefits of transfer learning with the proposed method. The
source code is available at https://github.com/junhocho/paired-glyph-matching.
- Abstract(参考訳): フォントは様々な形態のグリフで単語の深い意味を伝えることができる。
タイポグラフィーの知識がなければ、適切なフォントを手動で選択したり、新しいフォントを設計するのは面倒で面倒な作業です。
ユーザが広大なフォントスタイルを探索し、新しいフォントスタイルを作成するために、フォント検索とフォントスタイル転送方法が提案されている。
これらのタスクは、高品質なフォント表現を学ぶ必要性を高める。
そこで本研究では,フォントスタイルを潜在空間に埋め込む新しいフォント表現学習手法を提案する。
フォントを他者から識別的に表現するために,同じフォント内のグリフの表現を互いに惹きつけるが,他のフォントの表現を押下する,ペア・グリフマッチングに基づくフォント表現学習モデルを提案する。
新しいフォント上でのクエリグリフを用いたフォント検索の評価を通じて,既存のフォント表現学習手法よりも優れた一般化性能が得られることを示す。
最後に、下流フォントスタイルの転送および生成タスクにおいて、提案手法による転送学習の利点を確認する。
ソースコードはhttps://github.com/junhocho/paired-glyph-matchingで入手できる。
関連論文リスト
- VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
本稿では,VQGANベースのフレームワーク(VQ-Font)を提案する。
具体的には、コードブック内でフォントトークンをカプセル化するために、VQGANを事前訓練する。その後、VQ-Fontは、合成したグリフをコードブックで洗練し、合成されたストロークと実世界のストロークのドメインギャップをなくす。
論文 参考訳(メタデータ) (2023-08-27T06:32:20Z) - Diff-Font: Diffusion Model for Robust One-Shot Font Generation [110.45944936952309]
Diff-Fontという拡散モデルに基づく新しいワンショットフォント生成手法を提案する。
提案するモデルは,フォントライブラリ全体を生成することを目的として,参照として1つのサンプルのみを与える。
十分に訓練されたDiff-Fontは、フォントギャップやフォントのバリエーションに対して堅牢であるだけでなく、難しい文字生成において有望なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-12-12T13:51:50Z) - Few-Shot Font Generation by Learning Fine-Grained Local Styles [90.39288370855115]
フラッシュショットフォント生成(FFG)は、いくつかの例で新しいフォントを生成することを目的としている。
提案手法は,1)参照からきめ細かな局所スタイルを学習し,2)コンテンツと参照グリフの空間的対応を学習するフォント生成手法である。
論文 参考訳(メタデータ) (2022-05-20T05:07:05Z) - FontNet: Closing the gap to font designer performance in font synthesis [3.991334489146843]
本稿では,フォント間の距離がフォント類似度と直接対応するような埋め込み空間において,フォントスタイルの分離を学習するFontNetというモデルを提案する。
我々は,任意の言語システムに適用可能なネットワークアーキテクチャと訓練手順を設計し,高解像度フォント画像を生成する。
論文 参考訳(メタデータ) (2022-05-13T08:37:10Z) - Scalable Font Reconstruction with Dual Latent Manifolds [55.29525824849242]
タイポグラフィー解析とフォント再構成を行う深層生成モデルを提案する。
このアプローチによって、効果的にモデル化できるキャラクタの種類を大規模にスケールアップすることが可能になります。
多くの言語の文字タイプを表す様々なデータセット上でフォント再構成のタスクを評価する。
論文 参考訳(メタデータ) (2021-09-10T20:37:43Z) - Font Completion and Manipulation by Cycling Between Multi-Modality
Representations [113.26243126754704]
中間表現としてグラフを用いた2次元グラフィックオブジェクトとしてフォントグリフの生成を探求する。
我々は、画像エンコーダと画像の間のグラフで、モダリティサイクルのイメージ・ツー・イメージ構造を定式化する。
本モデルでは,画像から画像までのベースラインと,それ以前のグリフ補完手法よりも改善された結果を生成する。
論文 参考訳(メタデータ) (2021-08-30T02:43:29Z) - A Multi-Implicit Neural Representation for Fonts [79.6123184198301]
エッジやコーナーのようなフォント固有の不連続性は、ニューラルネットワークを使って表現することが難しい。
そこで我々は,フォントを文順に表現するためのtextitmulti-implicitsを導入する。
論文 参考訳(メタデータ) (2021-06-12T21:40:11Z) - Few-shot Compositional Font Generation with Dual Memory [16.967987801167514]
我々は、新しいフォント生成フレームワークDual Memory-augmented Font Generation Network (DM-Font)を提案する。
我々は、構成性を活用するために、メモリコンポーネントとグローバルコンテキスト認識をジェネレータに採用する。
韓国手書きフォントとタイ手書きフォントの実験では,本手法が忠実なスタイリングによるサンプルの品質を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-05-21T08:13:40Z) - Attribute2Font: Creating Fonts You Want From Attributes [32.82714291856353]
Attribute2Fontは、属性値に基づいて条件付けられた任意の2つのフォント間でフォントスタイルの転送を実行するように訓練されている。
Attribute Attention Moduleと呼ばれる新しいユニットは、生成されたグリフ画像が顕著なフォント属性をより具体化するように設計されている。
論文 参考訳(メタデータ) (2020-05-16T04:06:53Z) - Character-independent font identification [11.86456063377268]
2文字が同一フォントであるか否かを判定する手法を提案する。
我々は様々なフォントイメージペアで訓練された畳み込みニューラルネットワーク(CNN)を用いる。
次に、ネットワークに見つからないフォントの異なるセットでモデルを評価する。
論文 参考訳(メタデータ) (2020-01-24T05:59:53Z) - Neural Style Difference Transfer and Its Application to Font Generation [14.567067583556717]
フォントを自動生成する手法を導入する。
2つの異なるフォント間のフォントスタイルの違いを見つけ出し、ニューラルスタイル転送を用いて別のフォントに転送する。
論文 参考訳(メタデータ) (2020-01-21T03:32:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。