論文の概要: Unsupervised Explanation Generation via Correct Instantiations
- arxiv url: http://arxiv.org/abs/2211.11160v1
- Date: Mon, 21 Nov 2022 03:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 19:39:31.195386
- Title: Unsupervised Explanation Generation via Correct Instantiations
- Title(参考訳): 正しいインスタンス化による教師なし説明生成
- Authors: Sijie Cheng, Zhiyong Wu, Jiangjie Chen, Zhixing Li, Yang Liu, Lingpeng
Kong
- Abstract要約: 本稿では,2フレーズの教師なし説明生成フレームワークNeonを提案する。
まず、Nonは文の修正されたインスタンスを生成する。
次にそれらを使用して、大規模なPLMに競合点を見つけ、説明を完了させる。
- 参考スコア(独自算出の注目度): 17.09610653509394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large pre-trained language models (PLM) have shown their great skills
at solving discriminative tasks, a significant gap remains when compared with
humans for explanation-related tasks. Among them, explaining the reason why a
statement is wrong (e.g., against commonsense) is incredibly challenging. The
major difficulty is finding the conflict point, where the statement contradicts
our real world. This paper proposes Neon, a two-phrase, unsupervised
explanation generation framework. Neon first generates corrected instantiations
of the statement (phase I), then uses them to prompt large PLMs to find the
conflict point and complete the explanation (phase II). We conduct extensive
experiments on two standard explanation benchmarks, i.e., ComVE and e-SNLI.
According to both automatic and human evaluations, Neon outperforms baselines,
even for those with human-annotated instantiations. In addition to explaining a
negative prediction, we further demonstrate that Neon remains effective when
generalizing to different scenarios.
- Abstract(参考訳): 大きな事前学習された言語モデル(plm)は、識別タスクの解決に優れたスキルを示しているが、説明関連のタスクで人間と比較した場合、大きなギャップは残る。
その中で、文が間違っている理由(例:常識に反する)を説明するのは非常に難しい。
最大の難点は、声明が現実の世界と矛盾する紛争点を見つけることだ。
本稿では,2フレーズの教師なし説明生成フレームワークNeonを提案する。
ネオンはまず文の修正されたインスタンス化(フェーズI)を生成し、それから大きなPLMに衝突点を見つけ、説明を完了させる(フェーズII)。
我々は,ComVE と e-SNLI の2つの標準説明ベンチマークについて広範な実験を行った。
自動評価と人的評価の両方で、Neonは人間に注釈を付けたインスタンス化であってもベースラインを上回っている。
負の予測を説明することに加えて、異なるシナリオに一般化してもネオンは有効であることを示す。
関連論文リスト
- Parallel Sentence-Level Explanation Generation for Real-World
Low-Resource Scenarios [18.5713713816771]
本論文は,弱教師付き学習から教師なし学習へ,問題を円滑に探求する最初の試みである。
並列説明生成と同時予測を容易にする非自己回帰解釈モデルを提案する。
論文 参考訳(メタデータ) (2023-02-21T14:52:21Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
非専門家によって書かれたオフ・ザ・シェルフの説明のように、タスクのために"チューニング"されていない説明は、中途半端なパフォーマンスをもたらす可能性がある。
本稿では,ブラックボックス方式で説明拡散プロンプトを最適化する方法の課題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:02:34Z) - Machine Reading, Fast and Slow: When Do Models "Understand" Language? [59.897515617661874]
本稿では,2つの言語スキル(コア参照の解決と比較)に関して,理解モデルを読み取る行動について検討する。
比較のため(コアではない)、より大きなエンコーダに基づくシステムは、より「正しい」情報に依存する傾向にあることがわかった。
論文 参考訳(メタデータ) (2022-09-15T16:25:44Z) - The Unreliability of Explanations in Few-Shot In-Context Learning [50.77996380021221]
我々は、テキスト上の推論、すなわち質問応答と自然言語推論を含む2つのNLPタスクに焦点を当てる。
入力と論理的に整合した説明は、通常より正確な予測を示す。
本稿では,説明の信頼性に基づいてモデル予測を校正する枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-06T17:57:58Z) - Visual Abductive Reasoning [85.17040703205608]
帰納的推論は、部分的な観察の可能な限りの可能な説明を求める。
本稿では,日常的な視覚的状況下でのマシンインテリジェンスの帰納的推論能力を調べるために,新たなタスクとデータセットであるVisual Abductive Reasoning(VAR)を提案する。
論文 参考訳(メタデータ) (2022-03-26T10:17:03Z) - Weakly Supervised Explainable Phrasal Reasoning with Neural Fuzzy Logic [24.868479255640718]
自然言語推論は,対象ラベルであるEntailment,Contradiction,Neutralの2つの文間の論理的関係を決定することを目的としている。
ディープラーニングモデルは、NLIに対する一般的なアプローチとなっているが、解釈可能性と説明性は欠如している。
本研究では,NLIの論理的推論の弱制御による説明可能性について論じる。
論文 参考訳(メタデータ) (2021-09-18T13:04:23Z) - Prompting Contrastive Explanations for Commonsense Reasoning Tasks [74.7346558082693]
大規模事前学習言語モデル(PLM)は、常識推論タスクにおいて、ほぼ人間に近い性能を達成することができる。
人間の解釈可能な証拠を生成するために、同じモデルを使う方法を示す。
論文 参考訳(メタデータ) (2021-06-12T17:06:13Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - Transformers as Soft Reasoners over Language [33.291806251021185]
本稿では,事実と規則を自然言語文として提供し,形式表現をバイパスする問題について検討する。
我々は、合成されたデータを用いて、これらの文に対する推論(または推論)をエミュレートするようにトランスフォーマーを訓練する。
RuleTakersと呼ばれる私たちのモデルは、この種の言語に対するソフトな推論が学習可能であるという、最初の実証的なデモンストレーションを提供します。
論文 参考訳(メタデータ) (2020-02-14T04:23:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。