Entanglement dynamics and classical complexity
- URL: http://arxiv.org/abs/2211.11213v1
- Date: Mon, 21 Nov 2022 07:01:39 GMT
- Title: Entanglement dynamics and classical complexity
- Authors: Jiaozi Wang, Barbara Dietz, Dario Rosa, Giuliano Benenti
- Abstract summary: We study the dynamical generation of entanglement for a two-body interacting system, starting from a separable coherent state.
We show analytically that in the quasiclassical regime the entanglement growth rate can be simply computed by means of the underlying classical dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the dynamical generation of entanglement for a two-body interacting
system, starting from a separable coherent state. We show analytically that in
the quasiclassical regime the entanglement growth rate can be simply computed
by means of the underlying classical dynamics. Furthermore, this rate is given
by the Kolmogorov-Sinai entropy, which characterizes dynamical complexity of
classical motion. Our results, illustrated by numerical simulations on a model
of coupled rotators, establish in the quasiclassical regime a link between the
generation of entanglement, a purely quantum phenomenon, and classical
complexity.
Related papers
- A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Classical Dynamics Generated by Long-Range Interactions for Lattice
Fermions and Quantum Spins [0.0]
We study the macroscopic dynamical properties of fermion and quantum-spin systems with long-range, or mean-field, interactions.
As is usual, the classical dynamics is driven by Liouville's equation.
arXiv Detail & Related papers (2020-09-11T10:00:12Z) - Evolution equations for quantum semi-Markov dynamics [0.0]
We investigate the relationship between local and non-local description of open quantum system dynamics.
This class of quantum evolutions guarantees mathematically well-defined master equations.
We conclude that such an approximation always leads to a Markovian evolution for the considered class of dynamics.
arXiv Detail & Related papers (2020-07-22T08:57:45Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Bridging entanglement dynamics and chaos in semiclassical systems [0.0]
We propose a unifying framework which connects the bipartite and multipartite entanglement growth to the quantifiers of classical and quantum chaos.
In the semiclassical regime, the dynamics of the von Neumann entanglement entropy, the spin squeezing, the quantum Fisher information and the out-of-time-order square commutator are governed by the divergence of nearby phase-space trajectories.
arXiv Detail & Related papers (2020-05-07T18:00:01Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.