Entanglement recovery in noisy binary quantum information protocols via
three-qubit quantum error correction codes
- URL: http://arxiv.org/abs/2211.11295v1
- Date: Mon, 21 Nov 2022 09:37:31 GMT
- Title: Entanglement recovery in noisy binary quantum information protocols via
three-qubit quantum error correction codes
- Authors: Alessio Morea, Michele N. Notarnicola and Stefano Olivares
- Abstract summary: In this paper we investigate the effects of the simple three-qubit QEC codes to restore entanglement and nonlocality in a two-qubit system.
We show that they can avoid the sudden death of entanglement and improve the performance of the addressed protocols also for larger noise amplitudes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of preserving entanglement against noises is of crucial importance
for both quantum communication and quantum information transfer. To this aim,
quantum error correction (QEC) codes may be employed to compensate, at least
partially, the detriments induced by environmental noise that can be modelled
as a bit-flip or a phase-flip error channel. In this paper we investigate the
effects of the simple three-qubit QEC codes to restore entanglement and
nonlocality in a two-qubit system and consider two practical applications:
superdense coding and quantum teleportation. Though the considered three-qubit
QEC codes are known to perfectly work in the presence of very small noise, we
show that they can avoid the sudden death of entanglement and improve the
performance of the addressed protocols also for larger noise amplitudes.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum State Reconstruction in a Noisy Environment via Deep Learning [0.9012198585960443]
We consider the tasks of reconstructing and classifying quantum states corrupted by an unknown noisy channel.
We show how such an approach can be used to recover with fidelities exceeding 99%.
We also consider the task of distinguishing between different quantum noisy channels, and show how a neural network-based classifier is able to solve such a classification problem with perfect accuracy.
arXiv Detail & Related papers (2023-09-21T10:03:30Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Learning logical Pauli noise in quantum error correction [0.7264378254137809]
We focus on the characterization of quantum computers in the context of stabilizer quantum error correction.
For arbitrary stabilizer codes, subsystem codes, and data syndrome codes, we prove that the logical error channel induced by Pauli noise can be estimated from syndrome data under minimal conditions.
arXiv Detail & Related papers (2022-09-19T18:00:06Z) - Adaptive quantum codes: constructions, applications and fault tolerance [0.0]
A perfect quantum code requires atleast five physical qubits to observe a noticeable improvement over the no-QEC scenario.
We propose an adaptive QEC protocol that allows transmission of quantum information from one site to the other over a 1-d spin chain with high fidelity.
arXiv Detail & Related papers (2022-03-07T10:06:16Z) - Quantum error correction with silicon spin qubits [0.0]
Large-scale quantum computers rely on quantum error correction to protect the fragile quantum information.
Recent advances in silicon-based qubits have enabled the implementations of high quality one and two qubit systems.
Here, we demonstrate a three-qubit phase correcting code in silicon, where an encoded three-qubit state is protected against any phase-flip error on one of the three qubits.
arXiv Detail & Related papers (2022-01-21T07:59:49Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
We show that measurement errors on readout qubits manifest as a renormalization on the effective logical noise.
We derive general methods for reducing the computational complexity of the exact effective logical noise by many orders of magnitude.
arXiv Detail & Related papers (2020-03-23T19:40:56Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.