論文の概要: DreamArtist++: Controllable One-Shot Text-to-Image Generation via Positive-Negative Adapter
- arxiv url: http://arxiv.org/abs/2211.11337v4
- Date: Thu, 30 Jan 2025 15:13:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:12:38.170929
- Title: DreamArtist++: Controllable One-Shot Text-to-Image Generation via Positive-Negative Adapter
- Title(参考訳): DreamArtist++: 正負のアダプタによる制御可能なワンショットテキスト・ツー・イメージ生成
- Authors: Ziyi Dong, Pengxu Wei, Liang Lin,
- Abstract要約: いくつかの例に基づく画像生成手法が提案されており、例えば、いくつかの入力参照の健全な特徴を吸収して新しい概念を生成する。
本研究では,DreamArtistというシンプルなフレームワークを提案する。このフレームワークは,事前学習した拡散モデルに対して,新しい正負の学習戦略を採用する。
我々は,画像類似性(忠実度)と多様性,生成制御性,スタイルのクローニングから,幅広い実験を行い,提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 63.622879199281705
- License:
- Abstract: State-of-the-arts text-to-image generation models such as Imagen and Stable Diffusion Model have succeed remarkable progresses in synthesizing high-quality, feature-rich images with high resolution guided by human text prompts. Since certain characteristics of image content \emph{e.g.}, very specific object entities or styles, are very hard to be accurately described by text, some example-based image generation approaches have been proposed, \emph{i.e.} generating new concepts based on absorbing the salient features of a few input references. Despite of acknowledged successes, these methods have struggled on accurately capturing the reference examples' characteristics while keeping diverse and high-quality image generation, particularly in the one-shot scenario (\emph{i.e.} given only one reference). To tackle this problem, we propose a simple yet effective framework, namely DreamArtist, which adopts a novel positive-negative prompt-tuning learning strategy on the pre-trained diffusion model, and it has shown to well handle the trade-off between the accurate controllability and fidelity of image generation with only one reference example. Specifically, our proposed framework incorporates both positive and negative embeddings or adapters and optimizes them in a joint manner. The positive part aggressively captures the salient characteristics of the reference image to drive diversified generation and the negative part rectifies inadequacies from the positive part. We have conducted extensive experiments and evaluated the proposed method from image similarity (fidelity) and diversity, generation controllability, and style cloning. And our DreamArtist has achieved a superior generation performance over existing methods. Besides, our additional evaluation on extended tasks, including concept compositions and prompt-guided image editing, demonstrates its effectiveness for more applications.
- Abstract(参考訳): ImagenやStable Diffusion Modelのような最先端のテキスト・ツー・イメージ生成モデルは、人間のテキストプロンプトによって導かれる高解像度の高画質な高画質特徴画像の合成において、顕著な進歩を遂げている。
画像コンテンツ \emph{e g } の特定の特徴、非常に特定のオブジェクトエンティティやスタイルは、テキストによって正確に記述することが困難であるため、いくつかの例ベースの画像生成アプローチが提案されている。
成功と認められているにもかかわらず、これらの手法は様々な高品質の画像生成を保ちながら、参照例の特徴を正確に捉えるのに苦労してきた。
この問題に対処するために,DreamArtistという,事前学習した拡散モデルに新たな正負の学習戦略を取り入れた,シンプルで効果的なフレームワークを提案する。
具体的には, 正および負の埋め込みやアダプタを併用し, 共同で最適化する手法を提案する。
正部は、基準画像の塩分特性を積極的に捕捉して多様化生成を駆動し、負部は、正部から不一致を補正する。
我々は,画像類似性(忠実度)と多様性,生成制御性,スタイルのクローニングから,幅広い実験を行い,提案手法の評価を行った。
そして私たちのDreamArtistは、既存のメソッドよりも優れた世代パフォーマンスを実現しました。
さらに、概念構成やプロンプト誘導画像編集を含む拡張タスクに対する追加評価は、より多くのアプリケーションに有効であることを示す。
関連論文リスト
- ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
本稿では,4つのサンプリングステップでコンテンツとスタイルの融合を実現する拡散モデルに基づく,インバージョンフリーなポートレートスタイリングフレームワークを提案する。
本稿では,一貫性機能における冗長な特徴をマージする機能統合戦略を提案し,注意制御の計算負荷を低減させる。
論文 参考訳(メタデータ) (2024-08-10T08:53:41Z) - Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
そこで本研究では,テキスト・ツー・イメージ・モデルによって生成された偽画像をソース・モデルに属性付けするためのトレーニング不要な手法を提案する。
テスト画像と候補画像の類似性を計算し、ランキングすることにより、画像のソースを決定することができる。
論文 参考訳(メタデータ) (2024-03-03T11:55:49Z) - Contrastive Prompts Improve Disentanglement in Text-to-Image Diffusion
Models [68.47333676663312]
テキスト・ツー・イメージ・モデルにおける画像要素のアンタングル化に有効な分類器フリーガイダンスの簡単な修正法を示す。
提案手法のキーとなる考え方は、最小限のトークンで異なる2つのプロンプトを持つ意図された要因を特徴づけることである。
我々は,(1)オブジェクトクラスで訓練されたドメイン固有拡散モデル,(2)テキスト・画像生成のための連続的なリグライクな制御,(3)ゼロショット画像エディタの性能向上の3つのシナリオにおいて,その利点を説明する。
論文 参考訳(メタデータ) (2024-02-21T03:01:17Z) - Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image
Personalization [56.12990759116612]
Pick-and-Drawは、パーソナライズ手法のアイデンティティ一貫性と生成多様性を高めるためのトレーニング不要なセマンティックガイダンスアプローチである。
提案手法は、パーソナライズされた拡散モデルに適用可能であり、単一の参照画像のみを必要とする。
論文 参考訳(メタデータ) (2024-01-30T05:56:12Z) - Fair Text-to-Image Diffusion via Fair Mapping [32.02815667307623]
本稿では,事前学習したテキスト・画像拡散モデルを修正する,フレキシブルでモデルに依存しない,軽量なアプローチを提案する。
暗黙的言語バイアスの問題を効果的に解決することにより、より公平で多様な画像出力を生成する。
論文 参考訳(メタデータ) (2023-11-29T15:02:01Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
本研究では,人書きプロンプトに基づいて画像を生成する包括的テキスト・画像生成モデルについて検討する。
いくつかの属性に対して、画像はテキストよりも概念を表現的に表現できることを示す。
Inclusive Text-to- Image GENeration に容易に利用可能な参照画像を活用する新しいアプローチ ITI-GEN を提案する。
論文 参考訳(メタデータ) (2023-09-11T15:54:30Z) - ReGeneration Learning of Diffusion Models with Rich Prompts for
Zero-Shot Image Translation [8.803251014279502]
大規模なテキスト・ツー・イメージモデルは、多彩で高忠実な画像を合成する素晴らしい能力を示した。
現在のモデルでは、編集プロセス中に元の画像の内容に大きな変更を加えることができる。
画像と画像の拡散モデル(ReDiffuser)における再生学習を提案する。
論文 参考訳(メタデータ) (2023-05-08T12:08:12Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。