論文の概要: DreamArtist++: Controllable One-Shot Text-to-Image Generation via Positive-Negative Adapter
- arxiv url: http://arxiv.org/abs/2211.11337v4
- Date: Thu, 30 Jan 2025 15:13:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:12:38.170929
- Title: DreamArtist++: Controllable One-Shot Text-to-Image Generation via Positive-Negative Adapter
- Title(参考訳): DreamArtist++: 正負のアダプタによる制御可能なワンショットテキスト・ツー・イメージ生成
- Authors: Ziyi Dong, Pengxu Wei, Liang Lin,
- Abstract要約: いくつかの例に基づく画像生成手法が提案されており、例えば、いくつかの入力参照の健全な特徴を吸収して新しい概念を生成する。
本研究では,DreamArtistというシンプルなフレームワークを提案する。このフレームワークは,事前学習した拡散モデルに対して,新しい正負の学習戦略を採用する。
我々は,画像類似性(忠実度)と多様性,生成制御性,スタイルのクローニングから,幅広い実験を行い,提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 63.622879199281705
- License:
- Abstract: State-of-the-arts text-to-image generation models such as Imagen and Stable Diffusion Model have succeed remarkable progresses in synthesizing high-quality, feature-rich images with high resolution guided by human text prompts. Since certain characteristics of image content \emph{e.g.}, very specific object entities or styles, are very hard to be accurately described by text, some example-based image generation approaches have been proposed, \emph{i.e.} generating new concepts based on absorbing the salient features of a few input references. Despite of acknowledged successes, these methods have struggled on accurately capturing the reference examples' characteristics while keeping diverse and high-quality image generation, particularly in the one-shot scenario (\emph{i.e.} given only one reference). To tackle this problem, we propose a simple yet effective framework, namely DreamArtist, which adopts a novel positive-negative prompt-tuning learning strategy on the pre-trained diffusion model, and it has shown to well handle the trade-off between the accurate controllability and fidelity of image generation with only one reference example. Specifically, our proposed framework incorporates both positive and negative embeddings or adapters and optimizes them in a joint manner. The positive part aggressively captures the salient characteristics of the reference image to drive diversified generation and the negative part rectifies inadequacies from the positive part. We have conducted extensive experiments and evaluated the proposed method from image similarity (fidelity) and diversity, generation controllability, and style cloning. And our DreamArtist has achieved a superior generation performance over existing methods. Besides, our additional evaluation on extended tasks, including concept compositions and prompt-guided image editing, demonstrates its effectiveness for more applications.
- Abstract(参考訳): ImagenやStable Diffusion Modelのような最先端のテキスト・ツー・イメージ生成モデルは、人間のテキストプロンプトによって導かれる高解像度の高画質な高画質特徴画像の合成において、顕著な進歩を遂げている。
画像コンテンツ \emph{e g } の特定の特徴、非常に特定のオブジェクトエンティティやスタイルは、テキストによって正確に記述することが困難であるため、いくつかの例ベースの画像生成アプローチが提案されている。
成功と認められているにもかかわらず、これらの手法は様々な高品質の画像生成を保ちながら、参照例の特徴を正確に捉えるのに苦労してきた。
この問題に対処するために,DreamArtistという,事前学習した拡散モデルに新たな正負の学習戦略を取り入れた,シンプルで効果的なフレームワークを提案する。
具体的には, 正および負の埋め込みやアダプタを併用し, 共同で最適化する手法を提案する。
正部は、基準画像の塩分特性を積極的に捕捉して多様化生成を駆動し、負部は、正部から不一致を補正する。
我々は,画像類似性(忠実度)と多様性,生成制御性,スタイルのクローニングから,幅広い実験を行い,提案手法の評価を行った。
そして私たちのDreamArtistは、既存のメソッドよりも優れた世代パフォーマンスを実現しました。
さらに、概念構成やプロンプト誘導画像編集を含む拡張タスクに対する追加評価は、より多くのアプリケーションに有効であることを示す。
関連論文リスト
- Ada-adapter:Fast Few-shot Style Personlization of Diffusion Model with Pre-trained Image Encoder [57.574544285878794]
Ada-Adapterは拡散モデルの少数ショットスタイルのパーソナライズのための新しいフレームワークである。
提案手法は,単一の参照画像を用いたゼロショット方式の効率的な転送を可能にする。
フラットアートや3Dレンダリング,ロゴデザインなど,さまざまな芸術的スタイルに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-07-08T02:00:17Z) - Inpaint Biases: A Pathway to Accurate and Unbiased Image Generation [0.0]
Inpaint Biasesフレームワークは,画像生成の精度を高めるために,ユーザ定義マスクとインペイント技術を利用する。
我々は,このフレームワークが生成した画像のユーザ意図に対する忠実度を大幅に改善し,モデルの作成能力を向上することを示す。
論文 参考訳(メタデータ) (2024-05-29T05:04:07Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Training-Free Consistent Text-to-Image Generation [80.4814768762066]
テキスト・ツー・イメージ・モデルは様々なプロンプトで同じ主題を表現できる。
既存のアプローチは、特定のユーザが提供する主題を記述する新しい単語を教えるためにモデルを微調整する。
本研究では、事前学習モデルの内部アクティベーションを共有することによって、一貫した主題生成を可能にする、トレーニング不要なアプローチであるConsiStoryを提案する。
論文 参考訳(メタデータ) (2024-02-05T18:42:34Z) - DreamDrone: Text-to-Image Diffusion Models are Zero-shot Perpetual View Generators [56.994967294931286]
テキストプロンプトからフライスルーシーンを生成する新しいゼロショット・トレーニングフリーパイプラインであるDreamDroneを紹介する。
我々は、高品質な画像生成と非有界な一般化能力のために、事前訓練されたテキスト・画像拡散モデルの中間潜時符号を明示的に修正することを提唱する。
論文 参考訳(メタデータ) (2023-12-14T08:42:26Z) - FaceStudio: Put Your Face Everywhere in Seconds [23.381791316305332]
アイデンティティを保存する画像合成は、パーソナライズされたスタイリスティックなタッチを加えながら、被験者のアイデンティティを維持することを目指している。
Textual InversionやDreamBoothといった従来の手法は、カスタムイメージ作成に力を入れている。
本研究は,人間の画像に焦点をあてたアイデンティティ保存合成への新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-05T11:02:45Z) - Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing
Else [75.6806649860538]
我々は,事前学習した拡散モデルを用いた自然多概念生成という,より野心的な目標を考える。
マルチコンセプト生成性能を著しく低下させる概念支配と非局所的貢献を観察する。
我々は、より現実的なマルチコンセプトのテキスト・ツー・イメージ生成のために、テキストの埋め込みを微調整することで、上記の問題を克服する最小の低コストのソリューションを設計する。
論文 参考訳(メタデータ) (2023-10-11T12:05:44Z) - ReGeneration Learning of Diffusion Models with Rich Prompts for
Zero-Shot Image Translation [8.803251014279502]
大規模なテキスト・ツー・イメージモデルは、多彩で高忠実な画像を合成する素晴らしい能力を示した。
現在のモデルでは、編集プロセス中に元の画像の内容に大きな変更を加えることができる。
画像と画像の拡散モデル(ReDiffuser)における再生学習を提案する。
論文 参考訳(メタデータ) (2023-05-08T12:08:12Z) - Language Does More Than Describe: On The Lack Of Figurative Speech in
Text-To-Image Models [63.545146807810305]
テキスト・ツー・イメージ拡散モデルでは、テキスト入力プロンプトから高品質な画像を生成することができる。
これらのモデルは、コンテンツベースのラベル付けプロトコルから収集されたテキストデータを用いて訓練されている。
本研究では,現在使用されているテキスト・画像拡散モデルのトレーニングに使用されている公開テキストデータの感情性,目的性,抽象化の程度を特徴付ける。
論文 参考訳(メタデータ) (2022-10-19T14:20:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。