論文の概要: Applications of statistical causal inference in software engineering
- arxiv url: http://arxiv.org/abs/2211.11482v3
- Date: Thu, 23 Mar 2023 07:25:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 18:00:53.337186
- Title: Applications of statistical causal inference in software engineering
- Title(参考訳): ソフトウェア工学における統計的因果推論の応用
- Authors: Julien Siebert
- Abstract要約: 本稿では,統計的因果推論手法を適用したソフトウェア工学における既存の研究を概観する。
その結果,統計的因果推論手法の適用は比較的最近であり,それに対応する研究コミュニティは比較的断片的であることがわかった。
- 参考スコア(独自算出の注目度): 2.969705152497174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper reviews existing work in software engineering that applies
statistical causal inference methods. These methods aim at estimating causal
effects from observational data. The review covers 32 papers published between
2010 and 2022. Our results show that the application of statistical causal
inference methods is relatively recent and that the corresponding research
community remains relatively fragmented.
- Abstract(参考訳): 本稿では,統計的因果推論手法を適用したソフトウェア工学における既存の研究を概観する。
これらの手法は観測データから因果効果を推定することを目的としている。
2010年から2022年にかけて32の論文が出版された。
その結果,統計的因果推論手法の適用は比較的最近であり,それに対応する研究コミュニティは比較的断片化されている。
関連論文リスト
- StatWhy: Formal Verification Tool for Statistical Hypothesis Testing Programs [0.9886108751871757]
本稿では,統計的プログラムの正当性を正式に特定し,自動検証する手法を提案する。
プログラマは、統計プログラムのソースコードに、これらのメソッドの要件をアノテートする必要がある。
我々のソフトウェアツールStatWhyは、プログラマが統計手法の要件を適切に指定したかどうかを自動的にチェックする。
論文 参考訳(メタデータ) (2024-05-25T05:07:33Z) - A Second Look at the Impact of Passive Voice Requirements on Domain
Modeling: Bayesian Reanalysis of an Experiment [4.649794383775257]
我々は、受動音声がその後のドメイン・モデリング活動に与える影響について、唯一知られている制御実験を再分析する。
その結果, 原作者の観察した影響は, 以前考えられていたよりも遥かに少ないことがわかった。
論文 参考訳(メタデータ) (2024-02-16T16:24:00Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Towards Causal Analysis of Empirical Software Engineering Data: The
Impact of Programming Languages on Coding Competitions [10.51554436183424]
本稿では,構造因果モデルに基づく新しい手法について述べる。
Code Jamにおけるプログラマのパフォーマンスに関する公開データを解析するために,これらのアイデアを適用した。
全く同じデータの純粋に関連性のある解析と因果解析の間には,かなりの差が認められた。
論文 参考訳(メタデータ) (2023-01-18T13:46:16Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - An evaluation framework for comparing causal inference models [3.1372269816123994]
提案手法を用いて、いくつかの最先端因果効果推定モデルを比較した。
このアプローチの背後にある主な動機は、少数のインスタンスやシミュレーションがベンチマークプロセスに与える影響を取り除くことである。
論文 参考訳(メタデータ) (2022-08-31T21:04:20Z) - Valid Inference After Causal Discovery [73.87055989355737]
我々は、因果関係発見後の推論に有効なツールを開発する。
因果発見とその後の推論アルゴリズムの組み合わせは,高度に膨らんだ誤発見率をもたらすことを示す。
論文 参考訳(メタデータ) (2022-08-11T17:40:45Z) - Online Bootstrap Inference For Policy Evaluation in Reinforcement
Learning [90.59143158534849]
近年の強化学習の出現は、頑健な統計的推論手法の需要を生み出している。
オンライン学習における統計的推論の既存の方法は、独立してサンプリングされた観察を含む設定に限られる。
オンラインブートストラップは線形近似アルゴリズムにおける統計的推測のための柔軟で効率的な手法であるが、マルコフノイズを含む設定における有効性はまだ検討されていない。
論文 参考訳(メタデータ) (2021-08-08T18:26:35Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。