Towards Automatic Prediction of Outcome in Treatment of Cerebral
Aneurysms
- URL: http://arxiv.org/abs/2211.11749v1
- Date: Fri, 18 Nov 2022 19:23:00 GMT
- Title: Towards Automatic Prediction of Outcome in Treatment of Cerebral
Aneurysms
- Authors: Ashutosh Jadhav, Satyananda Kashyap, Hakan Bulu, Ronak Dholakia, Amon
Y. Liu, Tanveer Syeda-Mahmood, William R. Patterson, Hussain Rangwala, Mehdi
Moradi
- Abstract summary: Intrasaccular flow disruptors treat cerebral aneurysms by diverting the blood flow from the aneurysm sac.
Residual flow into the sac after the intervention could be due to the use of an undersized device, or to vascular anatomy and clinical condition of the patient.
We report a machine learning model based on over 100 clinical and imaging features that predict the outcome of wide-neck bifurcation aneurysm treatment with an intravascular embolization device.
- Score: 1.0889217694958016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrasaccular flow disruptors treat cerebral aneurysms by diverting the blood
flow from the aneurysm sac. Residual flow into the sac after the intervention
is a failure that could be due to the use of an undersized device, or to
vascular anatomy and clinical condition of the patient. We report a machine
learning model based on over 100 clinical and imaging features that predict the
outcome of wide-neck bifurcation aneurysm treatment with an intravascular
embolization device. We combine clinical features with a diverse set of common
and novel imaging measurements within a random forest model. We also develop
neural network segmentation algorithms in 2D and 3D to contour the sac in
angiographic images and automatically calculate the imaging features. These
deliver 90% overlap with manual contouring in 2D and 83% in 3D. Our predictive
model classifies complete vs. partial occlusion outcomes with an accuracy of
75.31%, and weighted F1-score of 0.74.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - X-Ray to CT Rigid Registration Using Scene Coordinate Regression [1.1687067206676627]
This paper proposes a fully automatic registration method that is robust to extreme viewpoints.
It is based on a fully convolutional neural network (CNN) that regresses the overlapping coordinates for a given X-ray image.
The proposed method achieved an average mean target registration error (mTRE) of 3.79 mm in the 50th percentile of the simulated test dataset and projected mTRE of 9.65 mm in the 50th percentile of real fluoroscopic images for pelvis registration.
arXiv Detail & Related papers (2023-11-25T17:48:46Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
This paper proposes a vision-based approach allowing autonomous robotic US limb scanning.
To this end, an atlas MRI template of a human arm with annotated vascular structures is used to generate trajectories.
In all cases, the system can successfully acquire the planned vascular structure on volunteers' limbs.
arXiv Detail & Related papers (2022-08-10T15:39:20Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - The interpretation of endobronchial ultrasound image using 3D
convolutional neural network for differentiating malignant and benign
mediastinal lesions [3.0969191504482247]
The purpose of this study is to differentiate malignant and benign lesions by using endobronchial ultrasound (EBUS) image.
Our model is robust to noise and able to fuse various imaging features and aspiration of EBUS videos.
arXiv Detail & Related papers (2021-07-29T08:38:17Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
arXiv Detail & Related papers (2021-04-04T20:30:14Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.