A Low Latency Adaptive Coding Spiking Framework for Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2211.11760v3
- Date: Wed, 24 Apr 2024 02:40:22 GMT
- Title: A Low Latency Adaptive Coding Spiking Framework for Deep Reinforcement Learning
- Authors: Lang Qin, Rui Yan, Huajin Tang,
- Abstract summary: In this paper, we use learnable matrix multiplication to encode and decode spikes, improving the flexibility of the coders.
We train the SNNs using the direct training method and use two different structures for online and offline RL algorithms.
Experiments have revealed that our method achieves optimal performance with ultra-low latency and excellent energy efficiency.
- Score: 27.558298367330053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, spiking neural networks (SNNs) have been used in reinforcement learning (RL) due to their low power consumption and event-driven features. However, spiking reinforcement learning (SRL), which suffers from fixed coding methods, still faces the problems of high latency and poor versatility. In this paper, we use learnable matrix multiplication to encode and decode spikes, improving the flexibility of the coders and thus reducing latency. Meanwhile, we train the SNNs using the direct training method and use two different structures for online and offline RL algorithms, which gives our model a wider range of applications. Extensive experiments have revealed that our method achieves optimal performance with ultra-low latency (as low as 0.8% of other SRL methods) and excellent energy efficiency (up to 5X the DNNs) in different algorithms and different environments.
Related papers
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Neural Network Compression for Reinforcement Learning Tasks [1.0124625066746595]
In real applications of Reinforcement Learning (RL), such as robotics, low latency and energy efficient inference is very desired.
The use of sparsity and pruning for optimizing Neural Network inference, and particularly to improve energy and latency efficiency, is a standard technique.
In this work, we perform a systematic investigation of applying these optimization techniques for different RL algorithms in different RL environments, yielding up to a 400-fold reduction in the size of neural networks.
arXiv Detail & Related papers (2024-05-13T13:46:02Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
Deep Reinforcement Learning (RL) is a powerful framework for solving complex real-world problems.
One way to tackle this problem is to prune neural networks leaving only the necessary parameters.
We close the gap between RL and single-shot pruning techniques and present a general pruning approach to the Offline RL.
arXiv Detail & Related papers (2021-12-31T18:10:02Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
Spiking Neural Networks (SNNs) provide higher computational efficiency in event driven neuromorphic hardware.
SNNs suffer from high inference latency, resulting from inefficient input encoding and training techniques.
This paper presents a training framework for low-latency energy-efficient SNNs.
arXiv Detail & Related papers (2021-07-26T06:16:40Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
We present Stored Embeddings for Efficient Reinforcement Learning (SEER)
SEER is a simple modification of existing off-policy deep reinforcement learning methods.
We show that SEER does not degrade the performance of RLizable agents while significantly saving computation and memory.
arXiv Detail & Related papers (2021-03-04T08:14:10Z) - Can Increasing Input Dimensionality Improve Deep Reinforcement Learning? [15.578423102700764]
We propose an online feature extractor network (OFENet) that uses neural nets to produce good representations to be used as inputs to deep RL algorithms.
We show that the RL agents learn more efficiently with the high-dimensional representation than with the lower-dimensional state observations.
arXiv Detail & Related papers (2020-03-03T16:52:05Z) - PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning [16.269923100433232]
We develop a working algorithm, named Policy Pruning and Shrinking (PoPS), to train DRL models with strong performance.
PoPS is based on a novel iterative policy pruning and shrinking method that leverages the power of transfer learning.
We present an extensive experimental study that demonstrates the strong performance of PoPS using the popular Cartpole, Lunar Lander, Pong, and Pacman environments.
arXiv Detail & Related papers (2020-01-14T19:28:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.