Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II
- URL: http://arxiv.org/abs/2407.13113v1
- Date: Thu, 18 Jul 2024 02:46:06 GMT
- Title: Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II
- Authors: Rixin Wu, Ran Wang, Jie Hao, Qiang Wu, Ping Wang, Dusit Niyato,
- Abstract summary: This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
- Score: 52.083337333478674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW), aiming to use a single deep reinforcement learning (DRL) model to solve the entire multiobjective optimization problem. The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL, thereby mitigating the limitations of both approaches. Firstly, we design an MOVRPTW model to balance the minimization of travel cost and the maximization of customer satisfaction. Subsequently, we present a novel DRL framework that incorporates a transformer-based policy network. This network is composed of an encoder module, a weight embedding module where the weights of the objective functions are incorporated, and a decoder module. NSGA-II is then utilized to optimize the solutions generated by WADRL. Finally, extensive experimental results demonstrate that our method outperforms the existing and traditional methods. Due to the numerous constraints in VRPTW, generating initial solutions of the NSGA-II algorithm can be time-consuming. However, using solutions generated by the WADRL as initial solutions for NSGA-II significantly reduces the time required for generating initial solutions. Meanwhile, the NSGA-II algorithm can enhance the quality of solutions generated by WADRL, resulting in solutions with better scalability. Notably, the weight-aware strategy significantly reduces the training time of DRL while achieving better results, enabling a single DRL model to solve the entire multiobjective optimization problem.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
This work proposes a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural optimization.
In particular, we design a powerful yet lightweight instance-conditioned Routing adaptation module for the NCO model.
We develop an efficient three-stage reinforcement learning-based training scheme that enables the model to learn cross-scale features without any labeled optimal solution.
arXiv Detail & Related papers (2024-05-03T08:00:19Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Toward Rapid, Optimal, and Feasible Power Dispatch through Generalized
Neural Mapping [0.0]
We propose LOOP-LC 2.0 as a learning-based approach for solving the power dispatch problem.
A notable advantage of the LOOP-LC 2.0 framework is its ability to ensure near-optimality and strict feasibility of solutions.
We demonstrate the effectiveness of the LOOP-LC 2.0 methodology in terms of training speed, computational time, optimality, and solution feasibility.
arXiv Detail & Related papers (2023-11-08T17:02:53Z) - Enhancing Column Generation by Reinforcement Learning-Based
Hyper-Heuristic for Vehicle Routing and Scheduling Problems [9.203492057735074]
Column generation (CG) is a vital method to solve large-scale problems by dynamically generating variables.
We propose a reinforcement learning-based hyper-heuristic framework, dubbed RLHH, to enhance the performance of CG.
arXiv Detail & Related papers (2023-10-15T00:05:50Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.