Sensitivity Comparison of Two-photon vs Three-photon Rydberg
Electrometry
- URL: http://arxiv.org/abs/2211.11848v2
- Date: Wed, 23 Nov 2022 17:09:14 GMT
- Title: Sensitivity Comparison of Two-photon vs Three-photon Rydberg
Electrometry
- Authors: Nikunjkumar Prajapati, Narayan Bhusal, Andrew P. Rotunno, Samuel
Berweger, Matthew T. Simons, Alexandra B. Artusio-Glimpse, Ying Ju Wang, Eric
Bottomley, Haoquan Fan, and Christopher L. Holloway
- Abstract summary: We model the 4-level and 5-level atomic system and compare how the transmission of the probe changes with different powers of the lasers used and strengths of the RF field.
We find that the three-photon system boasts much narrower line widths compared to the conventional two-photon EIT.
In addition to this, we calculate the expected sensitivity for the two-photon Rydberg sensor and find that the best achievable sensitivity is over an order of magnitude better than the current measured values of 5 uV/m/Hz.
- Score: 45.82374977939355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the sensitivity of three-photon EIT in Rydberg atoms to radio
frequency detection and compare it against conventional two-photon systems.
Specifically, we model the 4-level and 5-level atomic system and compare how
the transmission of the probe changes with different powers of the lasers used
and strengths of the RF field. In this model, we also define a sensitivity
metric to best relate to the operation of the current best experimental
implementation based on shot noise limited detection. We find that the
three-photon system boasts much narrower line widths compared to the
conventional two-photon EIT. However, these narrow line features do not align
with the regions of the best sensitivity. In addition to this, we calculate the
expected sensitivity for the two-photon Rydberg sensor and find that the best
achievable sensitivity is over an order of magnitude better than the current
measured values of 5 uV/m/Hz. However, by accounting for the additional noise
sources in the experiment and the quantum efficiency of the photo-detectors,
the values are in good agreement.
Related papers
- Performance of a radio-frequency two-photon atomic magnetometer in different magnetic induction measurement geometries [0.0]
Developments reported here integrate the fundamental and applied aspects of the two-photon process in magnetic induction measurements.
High contrast measurements of defects can be obtained due to the sensor's insensitivity to the primary field.
arXiv Detail & Related papers (2024-09-26T15:11:07Z) - Investigation of fluorescence versus transmission readout for
three-photon Rydberg excitation used in electrometry [31.575197452344923]
We present a three-photon based fluorescence readout method where the strength of the fluorescence scales with the strength of the radio-frequency (RF) field being applied.
We compare this method to conventional three-photon electromagnetically-induced transparency (EIT) and electromagnetically-induced absorption (EIA)
Our demonstrated EIA/EIT sensitivity in the collinear three-photon Cesium system is the best reported to date at roughly 30 uVm-1Hz-1/2.
arXiv Detail & Related papers (2024-02-01T16:09:39Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Enhanced Sensitivity in Rydberg Atom Electric Field Sensors through
Autler-Townes Effect and Two-Photon Absorption: A Theoretical Analysis Using
Many-Mode Floquet Theory [10.726779205155257]
We study the sensitivity of a Rydberg atom electric field sensor with a specific focus on the minimum detectable field (MDF) as a key metric.
To enhance the sensor's sensitivity when the frequency of the signal electric field deviates from resonance frequencies between Rydberg states, we propose incorporating an extra coupling electric field.
These insights hold promising implications for the development of more robust and versatile electric field sensing devices.
arXiv Detail & Related papers (2023-09-20T00:24:57Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Remote Phase Sensing by Coherent Single Photon Addition [58.720142291102135]
We propose a remote phase sensing scheme inspired by the high sensitivity of the entanglement produced by coherent multimode photon addition on the phase set in the remote heralding apparatus.
We derive the optimal observable to perform remote phase estimation from heralded quadrature measurements.
arXiv Detail & Related papers (2021-08-26T14:52:29Z) - Fundamental Sensitivity Bounds for Quantum Enhanced Optical Resonance
Sensors Based on Transmission and Phase Estimation [1.6230648949593154]
We study optical resonance sensors, which detect a change in a parameter of interest through a resonance shift.
We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system.
We also study the effect of losses external to the sensor on the degree of quantum enhancement.
arXiv Detail & Related papers (2021-06-14T20:23:12Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Conceptual Design Report for the LUXE Experiment [116.47875392913599]
We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions.
The high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model.
arXiv Detail & Related papers (2021-02-03T12:27:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.