論文の概要: Bayesian Learning for Neural Networks: an algorithmic survey
- arxiv url: http://arxiv.org/abs/2211.11865v2
- Date: Wed, 23 Nov 2022 08:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 13:10:52.757799
- Title: Bayesian Learning for Neural Networks: an algorithmic survey
- Title(参考訳): ニューラルネットワークのためのベイズ学習:アルゴリズムによる調査
- Authors: Martin Magris, Alexandros Iosifidis
- Abstract要約: この自己完結型調査は、ベイズ学習ニューラルネットワークの原理とアルゴリズムを読者に紹介する。
アクセシブルで実践的な視点からこのトピックを紹介します。
- 参考スコア(独自算出の注目度): 95.42181254494287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The last decade witnessed a growing interest in Bayesian learning. Yet, the
technicality of the topic and the multitude of ingredients involved therein,
besides the complexity of turning theory into practical implementations, limit
the use of the Bayesian learning paradigm, preventing its widespread adoption
across different fields and applications. This self-contained survey engages
and introduces readers to the principles and algorithms of Bayesian Learning
for Neural Networks. It provides an introduction to the topic from an
accessible, practical-algorithmic perspective. Upon providing a general
introduction to Bayesian Neural Networks, we discuss and present both standard
and recent approaches for Bayesian inference, with an emphasis on solutions
relying on Variational Inference and the use of Natural gradients. We also
discuss the use of manifold optimization as a state-of-the-art approach to
Bayesian learning. We examine the characteristic properties of all the
discussed methods, and provide pseudo-codes for their implementation, paying
attention to practical aspects, such as the computation of the gradients
- Abstract(参考訳): 過去10年間、ベイズ学習への関心が高まった。
しかし、このトピックの技術的な性質とそれに関連する多くの要素は、理論を実践的な実装に変換する複雑さに加えて、ベイズ学習パラダイムの使用を制限することや、様々な分野や応用で広く採用されるのを妨げている。
この自己完結型調査は、ベイズ学習ニューラルネットワークの原理とアルゴリズムを読者に紹介する。
アクセス可能で実践的な視点からトピックを紹介します。
ベイズニューラルネットワークの一般導入について、変分推論と自然勾配の利用に依存する解に重点を置いて、ベイズ推論の標準的および最近のアプローチを論じ、提示する。
また,ベイズ学習の最先端手法としての多様体最適化についても論じる。
提案手法の特徴について検討し,その実装に擬似コードを提供し,勾配の計算などの実践的側面に注目した。
関連論文リスト
- Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
本稿では,ネストサンプリングアルゴリズムに特化してベイズ推論を高速化する新しい手法を提案する。
提案手法は,ベイズ推論過程における確率関数を動的に近似するために,フィードフォワードニューラルネットワークを用いてディープラーニングのパワーを利用する。
この実装はネストサンプリングアルゴリズムと統合され、単純な宇宙学のダークエネルギーモデルと多様な観測データセットの両方を用いて徹底的に評価されている。
論文 参考訳(メタデータ) (2024-05-06T09:14:58Z) - Domain Generalization through Meta-Learning: A Survey [6.524870790082051]
ディープニューラルネットワーク(DNN)は人工知能に革命をもたらしたが、アウト・オブ・ディストリビューション(OOD)データに直面すると、しばしばパフォーマンスが低下する。
本調査はメタラーニングの領域を掘り下げ,ドメインの一般化への貢献に焦点をあてたものである。
論文 参考訳(メタデータ) (2024-04-03T14:55:17Z) - Learning Expressive Priors for Generalization and Uncertainty Estimation
in Neural Networks [77.89179552509887]
本稿では,ディープニューラルネットワークにおける一般化と不確実性推定を推し進める新しい事前学習手法を提案する。
キーとなる考え方は、ニューラルネットワークのスケーラブルで構造化された後部を、一般化を保証する情報的事前として活用することである。
本研究では,不確実性推定と一般化における本手法の有効性を徹底的に示す。
論文 参考訳(メタデータ) (2023-07-15T09:24:33Z) - End-to-End Learning for Stochastic Optimization: A Bayesian Perspective [9.356870107137093]
最適化におけるエンド・ツー・エンド・ラーニングの原則的アプローチを開発する。
本稿では,標準エンドツーエンド学習アルゴリズムがベイズ解釈を認め,ベイズ後の行動地図を訓練することを示す。
次に、意思決定マップの学習のための新しいエンドツーエンド学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-07T05:55:45Z) - Embracing the Dark Knowledge: Domain Generalization Using Regularized
Knowledge Distillation [65.79387438988554]
十分なデータと代表データがない場合の一般化能力の欠如は、その実践的応用を妨げる課題の1つである。
我々はKDDG(Knowledge Distillation for Domain Generalization)という,シンプルで効果的な,プラグアンドプレイのトレーニング戦略を提案する。
教師ネットワークからの「より豊かな暗黒知識」と、我々が提案した勾配フィルタの両方が、マッピングの学習の難しさを軽減することができる。
論文 参考訳(メタデータ) (2021-07-06T14:08:54Z) - Recent Deep Semi-supervised Learning Approaches and Related Works [0.9790236766474201]
セミ教師付き学習は,ラベルの不足やラベルなしデータの量が多いことをモデルトレーニングに活用する学習手法である。
半教師付き学習環境における深層ニューラルネットワークの利用について,主に考察する。
論文 参考訳(メタデータ) (2021-06-22T03:44:03Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users [27.764388500937983]
ベイズ統計は、ディープニューラルネットワーク予測に関連する不確実性を理解し、定量化するフォーマリズムを提供する。
このチュートリアルでは、関連する文献の概要と、ベイズニューラルネットワークの設計、実装、使用、評価のための完全なツールセットを提供する。
論文 参考訳(メタデータ) (2020-07-14T05:21:27Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
本稿では,NNを連鎖グラフ(CG)、フィードフォワードを近似推論手法として識別する別の解釈を提案する。
CG解釈は、確率的グラフィカルモデルのリッチな理論的枠組みの中で、各NNコンポーネントの性質を規定する。
我々は,CG解釈が様々なNN技術に対する新しい理論的支援と洞察を提供することを示す具体例を実例で示す。
論文 参考訳(メタデータ) (2020-06-30T14:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。