論文の概要: Addressing Mistake Severity in Neural Networks with Semantic Knowledge
- arxiv url: http://arxiv.org/abs/2211.11880v1
- Date: Mon, 21 Nov 2022 22:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 18:45:41.639512
- Title: Addressing Mistake Severity in Neural Networks with Semantic Knowledge
- Title(参考訳): 意味的知識を持つニューラルネットワークにおける誤りの対処
- Authors: Natalie Abreu, Nathan Vaska, Victoria Helus
- Abstract要約: ほとんどの堅牢なトレーニング技術は、摂動入力のモデル精度を改善することを目的としている。
強靭性の代替形態として、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
我々は、現在の対人訓練手法を活用して、トレーニングプロセス中に標的の対人攻撃を発生させる。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robustness in deep neural networks and machine learning algorithms in general
is an open research challenge. In particular, it is difficult to ensure
algorithmic performance is maintained on out-of-distribution inputs or
anomalous instances that cannot be anticipated at training time. Embodied
agents will be deployed in these conditions, and are likely to make incorrect
predictions. An agent will be viewed as untrustworthy unless it can maintain
its performance in dynamic environments. Most robust training techniques aim to
improve model accuracy on perturbed inputs; as an alternate form of robustness,
we aim to reduce the severity of mistakes made by neural networks in
challenging conditions. We leverage current adversarial training methods to
generate targeted adversarial attacks during the training process in order to
increase the semantic similarity between a model's predictions and true labels
of misclassified instances. Results demonstrate that our approach performs
better with respect to mistake severity compared to standard and adversarially
trained models. We also find an intriguing role that non-robust features play
with regards to semantic similarity.
- Abstract(参考訳): ディープニューラルネットワークと機械学習アルゴリズム全般におけるロバスト性は、オープンリサーチの課題である。
特に、トレーニング時に予測できない配布外入力や異常なインスタンスに対して、アルゴリズムのパフォーマンスを確実に維持することは困難である。
エージェントはこれらの条件で展開され、誤った予測をする可能性が高い。
エージェントは、動的環境でパフォーマンスを維持できない限り、信頼できないと見なされる。
多くのロバストトレーニング手法は、摂動入力のモデル精度の向上を目的としており、その代替のロバストネスとして、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
モデルの予測と誤分類されたインスタンスの真のラベル間の意味的類似性を高めるために、現在の敵意訓練手法を利用して、トレーニングプロセス中に標的となる敵意攻撃を生成する。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
セマンティクスの類似性に関して、非ロバスト機能が果たす興味深い役割も見つけました。
関連論文リスト
- Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data [38.44734564565478]
本稿では, 特徴学習理論の観点から, 対角的例と対角的学習アルゴリズムの理論的理解を提供する。
本手法は,頑健な特徴学習を効果的に強化し,非ロバストな特徴学習を抑えることができることを示す。
論文 参考訳(メタデータ) (2024-10-11T03:59:49Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
対人訓練の2つのプレイヤーゼロサムパラダイムは、十分な強靭性を発揮できていない。
敵のトレーニングアルゴリズムでよく使われるサロゲートベースの緩和は、ロバスト性に関するすべての保証を無効にすることを示す。
対人訓練の新たな非ゼロサム二段階の定式化は、一致し、場合によっては最先端の攻撃よりも優れたフレームワークをもたらす。
論文 参考訳(メタデータ) (2023-06-19T16:00:48Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
すべてのシナリオで正確であるネットワークをトレーニングすることはできない。
深層学習法は不確実性を推定するためにモデルパラメータ空間をサンプリングする。
これらのパラメータは、しばしば、敵の攻撃によって悪用される、同じ脆弱性にさらされる。
本稿では,特徴デコレーションとフーリエ分割に基づく新たなアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T02:36:36Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Understanding the Logit Distributions of Adversarially-Trained Deep
Neural Networks [6.439477789066243]
敵の防御は、敵の攻撃による入力摂動に不変であるように、ディープニューラルネットワークを訓練する。
敵の攻撃を緩和するためには敵の訓練が成功しているが、敵の訓練を受けた(AT)モデルと標準モデルとの行動的差異はいまだに理解されていない。
対向性学習に不可欠な3つのロジット特性を同定する。
論文 参考訳(メタデータ) (2021-08-26T19:09:15Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。