A Survey on Backdoor Attack and Defense in Natural Language Processing
- URL: http://arxiv.org/abs/2211.11958v1
- Date: Tue, 22 Nov 2022 02:35:12 GMT
- Title: A Survey on Backdoor Attack and Defense in Natural Language Processing
- Authors: Xuan Sheng, Zhaoyang Han, Piji Li, Xiangmao Chang
- Abstract summary: We conduct a comprehensive review of backdoor attacks and defenses in the field of NLP.
We summarize benchmark datasets and point out the open issues to design credible systems to defend against backdoor attacks.
- Score: 18.29835890570319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is becoming increasingly popular in real-life applications,
especially in natural language processing (NLP). Users often choose training
outsourcing or adopt third-party data and models due to data and computation
resources being limited. In such a situation, training data and models are
exposed to the public. As a result, attackers can manipulate the training
process to inject some triggers into the model, which is called backdoor
attack. Backdoor attack is quite stealthy and difficult to be detected because
it has little inferior influence on the model's performance for the clean
samples. To get a precise grasp and understanding of this problem, in this
paper, we conduct a comprehensive review of backdoor attacks and defenses in
the field of NLP. Besides, we summarize benchmark datasets and point out the
open issues to design credible systems to defend against backdoor attacks.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Large Language Models are Good Attackers: Efficient and Stealthy Textual Backdoor Attacks [10.26810397377592]
We introduce the Efficient and Stealthy Textual backdoor attack method, EST-Bad, leveraging Large Language Models (LLMs)
Our EST-Bad encompasses three core strategies: optimizing the inherent flaw of models as the trigger, stealthily injecting triggers with LLMs, and meticulously selecting the most impactful samples for backdoor injection.
arXiv Detail & Related papers (2024-08-21T12:50:23Z) - DLP: towards active defense against backdoor attacks with decoupled learning process [2.686336957004475]
We propose a general training pipeline to defend against backdoor attacks.
We show that the model shows different learning behaviors in clean and poisoned subsets during training.
The effectiveness of our approach has been shown in numerous experiments across various backdoor attacks and datasets.
arXiv Detail & Related papers (2024-06-18T23:04:38Z) - A Survey of Backdoor Attacks and Defenses on Large Language Models: Implications for Security Measures [28.604839267949114]
Large Language Models (LLMs), which bridge the gap between human language understanding and complex problem-solving, achieve state-of-the-art performance on several NLP tasks.
Research has demonstrated that language models are susceptible to potential security vulnerabilities, particularly in backdoor attacks.
This paper presents a novel perspective on backdoor attacks for LLMs by focusing on fine-tuning methods.
arXiv Detail & Related papers (2024-06-10T23:54:21Z) - Setting the Trap: Capturing and Defeating Backdoors in Pretrained
Language Models through Honeypots [68.84056762301329]
Recent research has exposed the susceptibility of pretrained language models (PLMs) to backdoor attacks.
We propose and integrate a honeypot module into the original PLM to absorb backdoor information exclusively.
Our design is motivated by the observation that lower-layer representations in PLMs carry sufficient backdoor features.
arXiv Detail & Related papers (2023-10-28T08:21:16Z) - Backdoor Attacks and Countermeasures in Natural Language Processing Models: A Comprehensive Security Review [15.179940846141873]
Applicating third-party data and models has become a new paradigm for language modeling in NLP.
backdoor attacks can induce the model to exhibit expected behaviors through specific triggers.
There is still no systematic and comprehensive review to reflect the security challenges, attacker's capabilities, and purposes.
arXiv Detail & Related papers (2023-09-12T08:48:38Z) - Rethinking Backdoor Attacks [122.1008188058615]
In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation.
Defending against such attacks typically involves viewing these inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them.
We show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occurring features in the data.
arXiv Detail & Related papers (2023-07-19T17:44:54Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.