論文の概要: AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR
Prediction
- arxiv url: http://arxiv.org/abs/2211.12105v1
- Date: Tue, 22 Nov 2022 09:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 19:22:49.534443
- Title: AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR
Prediction
- Title(参考訳): AdaptDHM:マルチドメインCTR予測のための適応分布階層モデル
- Authors: Jinyun Li, Huiwen Zheng, Yuanlin Liu, Minfang Lu, Lixia Wu, Haoyuan Hu
- Abstract要約: 本稿では,適応分布階層モデル (Adaptive Distribution Hierarchical Model, AdaptDHM) という,エレガントで柔軟なマルチディストリビューション・モデリング手法を提案する。
本モデルでは, 予測精度が向上し, トレーニング期間中の時間コストは, 他のモデルに比べて50%以上低下する。
- 参考スコア(独自算出の注目度): 4.299153274884263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale commercial platforms usually involve numerous business domains
for diverse business strategies and expect their recommendation systems to
provide click-through rate (CTR) predictions for multiple domains
simultaneously. Existing promising and widely-used multi-domain models discover
domain relationships by explicitly constructing domain-specific networks, but
the computation and memory boost significantly with the increase of domains. To
reduce computational complexity, manually grouping domains with particular
business strategies is common in industrial applications. However, this
pre-defined data partitioning way heavily relies on prior knowledge, and it may
neglect the underlying data distribution of each domain, hence limiting the
model's representation capability. Regarding the above issues, we propose an
elegant and flexible multi-distribution modeling paradigm, named Adaptive
Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization
hierarchical structure consisting of a clustering process and classification
process. Specifically, we design a distribution adaptation module with a
customized dynamic routing mechanism. Instead of introducing prior knowledge
for pre-defined data allocation, this routing algorithm adaptively provides a
distribution coefficient for each sample to determine which cluster it belongs
to. Each cluster corresponds to a particular distribution so that the model can
sufficiently capture the commonalities and distinctions between these distinct
clusters. Extensive experiments on both public and large-scale Alibaba
industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our
model achieves impressive prediction accuracy and its time cost during the
training stage is more than 50% less than that of other models.
- Abstract(参考訳): 大規模商用プラットフォームは通常、多様なビジネス戦略のための多数のビジネスドメインを含み、複数のドメインに対してクリックスルーレート(CTR)予測を同時に提供するレコメンデーションシステムが期待される。
既存の有望かつ広く使われているマルチドメインモデルは、ドメイン固有のネットワークを明示的に構築することでドメイン関係を発見するが、計算とメモリはドメインの増加とともに大幅に増大する。
計算複雑性を低減するために、特定のビジネス戦略でドメインを手動でグループ化することは、産業アプリケーションで一般的である。
しかしながら、この事前定義されたデータ分割方法は、事前の知識に大きく依存しており、各ドメインの基盤となるデータ分散を無視する可能性があるため、モデルの表現能力を制限することができる。
本稿では,クラスタ化プロセスと分類プロセスからなるエンドツーエンド最適化階層構造であるadaptive distribution hierarchy model (adaptdhm) という,エレガントで柔軟なマルチ分散モデリングパラダイムを提案する。
具体的には,動的ルーティング機構をカスタマイズした分散適応モジュールを設計する。
事前定義されたデータ割り当てに事前知識を導入する代わりに、このルーティングアルゴリズムは、どのクラスタに属するかを決定するために各サンプルに適応的に分布係数を提供する。
各クラスタは特定の分布に対応し、モデルがこれらの異なるクラスタ間の共通点と区別を十分に捉えることができる。
当社のモデルは印象的な予測精度を達成し、トレーニング期間中の時間コストは他のモデルよりも50%以上小さくなっています。
関連論文リスト
- MLoRA: Multi-Domain Low-Rank Adaptive Network for CTR Prediction [18.524017579108044]
CTR予測のためのMulti-domain Low-Rank Adaptive Network (MLoRA)を提案する。
実験により,MLoRA法は最先端のベースラインに比べて大幅に改善された。
MLoRAのコードは公開されています。
論文 参考訳(メタデータ) (2024-08-14T05:53:02Z) - Virtual Classification: Modulating Domain-Specific Knowledge for
Multidomain Crowd Counting [67.38137379297717]
マルチドメインのクラウドカウントは、複数の多様なデータセットの一般的なモデルを学ぶことを目的としている。
ディープネットワークは、ドメインバイアスとして知られるすべてのドメインではなく、支配的なドメインの分布をモデル化することを好む。
マルチドメイン群カウントにおけるドメインバイアス問題を処理するために,MDKNet(Modulating Domain-specific Knowledge Network)を提案する。
論文 参考訳(メタデータ) (2024-02-06T06:49:04Z) - Collaborating Foundation Models for Domain Generalized Semantic Segmentation [23.359941294938142]
ドメイン一般化セマンティック(DGSS)は、ラベル付きソースドメイン上でモデルをトレーニングする。
我々はDGSSにアプローチし、CLOUDS(Domain Generalized Semantic)のためのCoLlaborative FOUndationモデルの組立を提案する。
論文 参考訳(メタデータ) (2023-12-15T13:43:24Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
ドメイン適応は、分布シフト中のラベル付きソースドメインからラベルなしターゲットドメインへの知識獲得と普及を目標とする。
近年の進歩は、大規模の深層学習モデルにより、小規模の下流の多様な課題に取り組むための豊富な知識が得られていることを示している。
本稿では,学習パラダイムである部分領域適応(Partial Domain Adaptation, PDA)を紹介する。
論文 参考訳(メタデータ) (2022-03-14T07:02:45Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
我々は、ドメイン固有性とドメイン不変性の両方が、re-idモデルの一般化能力の向上に不可欠であると主張する。
これら2種類の情報を同時にモデル化するために,2ストリーム適応学習 (TAL) を命名した。
我々のフレームワークは、単一ソースとマルチソースの両方のドメイン一般化タスクに適用できる。
論文 参考訳(メタデータ) (2021-11-29T01:27:42Z) - Graphical Modeling for Multi-Source Domain Adaptation [56.05348879528149]
マルチソースドメイン適応(MSDA)は、複数のソースドメインからターゲットドメインへの知識の転送に焦点を当てている。
我々は2種類のグラフィカルモデルを提案する。
MSDAの条件付きランダムフィールド(CRF-MSDA)とMSDAのマルコフランダムフィールド(MRF-MSDA)
これらの2つのモデルを、ドメインシフトとデータの複雑さが異なるMSDAの4つの標準ベンチマークデータセットで評価します。
論文 参考訳(メタデータ) (2021-04-27T09:04:22Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。