論文の概要: MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network
- arxiv url: http://arxiv.org/abs/2211.12156v1
- Date: Tue, 22 Nov 2022 10:35:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 18:10:19.884283
- Title: MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network
- Title(参考訳): MSS-DepthNet:マルチステップスパイクニューラルネットワークによる深さ予測
- Authors: Xiaoshan Wu, Weihua He, Man Yao, Ziyang Zhang, Yaoyuan Wang, and Guoqi
Li
- Abstract要約: スパイキングニューラルネットワークは、イベントカメラタスクの処理に適していると考えられる、新しいイベントベースの計算パラダイムである。
この研究は、新しい残差ブロックと多次元アテンションモジュールを組み合わせたスパイクニューラルネットワークアーキテクチャを提案する。
このモデルはMVSECデータセットで同じ大きさのANNネットワークより優れており、計算効率が高い。
- 参考スコア(独自算出の注目度): 8.53512216864715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are considered to have great potential for computer vision and
robotics applications because of their high temporal resolution and low power
consumption characteristics. However, the event stream output from event
cameras has asynchronous, sparse characteristics that existing computer vision
algorithms cannot handle. Spiking neural network is a novel event-based
computational paradigm that is considered to be well suited for processing
event camera tasks. However, direct training of deep SNNs suffers from
degradation problems. This work addresses these problems by proposing a spiking
neural network architecture with a novel residual block designed and
multi-dimension attention modules combined, focusing on the problem of depth
prediction. In addition, a novel event stream representation method is
explicitly proposed for SNNs. This model outperforms previous ANN networks of
the same size on the MVSEC dataset and shows great computational efficiency.
- Abstract(参考訳): イベントカメラは、高時間分解能と低消費電力特性のため、コンピュータビジョンやロボティクスの応用に大きな可能性を秘めていると考えられている。
しかし、イベントカメラから出力されるイベントストリームは、既存のコンピュータビジョンアルゴリズムでは処理できない非同期でスパースな特性を持っている。
スパイキングニューラルネットワークは、イベントカメラタスクの処理に適していると考えられる、新しいイベントベースの計算パラダイムである。
しかし,深部SNNの直接訓練は劣化問題に悩まされている。
この研究は、深度予測の問題に焦点をあて、新しい残差ブロックと多次元アテンションモジュールを組み合わせたスパイクニューラルネットワークアーキテクチャを提案することで、これらの問題に対処する。
さらに,SNNに対して新しいイベントストリーム表現法を提案する。
このモデルはMVSECデータセットで同じ大きさのANNネットワークより優れており、計算効率が高い。
関連論文リスト
- EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN は、Parametric Leaky Integrate と Fire のニューロンに依存した、生物学的に検証可能なエンコーダ-デコーダU字型アーキテクチャである。
本稿では,スパイキングニューラルネットワークとイベントカメラを組み合わせることによって,エンド・ツー・エンドのバイオインスパイアされたセマンティックセマンティックセマンティクス手法を提案する。
DDD17で実施された実験は、EvSegSNNがMIoUの観点から最も近い最先端モデルを上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-20T10:36:24Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
我々は、イベントカメラから直接スパイキングニューラルネットワーク(SNN)を訓練し、高速で効率的な自動車組込みアプリケーションを設計することを提案する。
本稿では,2つの自動車イベントデータセットの実験を行い,スパイクニューラルネットワークのための最先端の分類結果を確立した。
論文 参考訳(メタデータ) (2022-05-09T14:39:47Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMSは、モーションセグメンテーションの大規模な問題に対する最初のディープエンコーダデコーダSNNアーキテクチャである。
textitSpikeMSは,テキストインクリメンタルな予測や,より少ない量のテストデータからの予測を行うことができることを示す。
論文 参考訳(メタデータ) (2021-05-13T21:34:55Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient
Hybrid Neural Networks [40.44712305614071]
本稿では,SNNとANNを統合したディープハイブリッドニューラルネットワークアーキテクチャであるSpike-FlowNetを提案する。
このネットワークは、MVSEC(Multi-Vehicle Stereo Event Camera)データセット上で、セルフ教師付き学習でエンドツーエンドにトレーニングされている。
論文 参考訳(メタデータ) (2020-03-14T20:37:21Z) - Event-Based Angular Velocity Regression with Spiking Networks [51.145071093099396]
スパイキングニューラルネットワーク(SNN)は、数値ではなく時間スパイクとして伝達される情報を処理する。
本稿では,イベントカメラから与えられた事象の時間回帰問題を初めて提案する。
角速度回帰を行うためにSNNをうまく訓練できることが示される。
論文 参考訳(メタデータ) (2020-03-05T17:37:16Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。