Diffusion Model Based Posterior Sampling for Noisy Linear Inverse
Problems
- URL: http://arxiv.org/abs/2211.12343v3
- Date: Wed, 24 Jan 2024 12:51:43 GMT
- Title: Diffusion Model Based Posterior Sampling for Noisy Linear Inverse
Problems
- Authors: Xiangming Meng and Yoshiyuki Kabashima
- Abstract summary: We propose an unsupervised sampling approach called diffusion model based posterior sampling (DMPS) to reconstruct the unknown signal from noisy linear measurements.
Specifically, using one diffusion model (DM) as an implicit prior, the fundamental difficulty in performing posterior sampling is that the noise-perturbed likelihood score, i.e., gradient of an annealed likelihood function, is intractable.
Extensive experiments are conducted on a variety of noisy linear inverse problems such as noisy super-resolution, denoising, deblurring, and colorization.
- Score: 17.49551570305112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the ubiquitous linear inverse problems with additive Gaussian
noise and propose an unsupervised sampling approach called diffusion model
based posterior sampling (DMPS) to reconstruct the unknown signal from noisy
linear measurements. Specifically, using one diffusion model (DM) as an
implicit prior, the fundamental difficulty in performing posterior sampling is
that the noise-perturbed likelihood score, i.e., gradient of an annealed
likelihood function, is intractable. To circumvent this problem, we introduce a
simple yet effective closed-form approximation using an uninformative prior
assumption. Extensive experiments are conducted on a variety of noisy linear
inverse problems such as noisy super-resolution, denoising, deblurring, and
colorization. In all tasks, the proposed DMPS demonstrates highly competitive
or even better performances on various tasks while being 3 times faster than
the state-of-the-art competitor diffusion posterior sampling (DPS).
Related papers
- Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.
Our method treats the time dimension of a video as the batch dimension image diffusion models.
We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems [2.8237889121096034]
We propose zero-shot approximate posterior sampling (ZAPS) to solve inverse problems in imaging.
ZAPS fixes the number of sampling steps, and uses zero-shot training with a physics-guided loss function to learn log-likelihood weights at each irregular timestep.
Our results show ZAPS reduces inference time, provides robustness to irregular noise schedules, and improves reconstruction quality.
arXiv Detail & Related papers (2024-07-16T00:09:37Z) - Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
We propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process.
DAPS significantly improves sample quality and stability across multiple image restoration tasks.
For example, we achieve a PSNR of 30.72dB on the FFHQ 256 dataset for phase retrieval, which is an improvement of 9.12dB compared to existing methods.
arXiv Detail & Related papers (2024-07-01T17:59:23Z) - Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems [0.0]
We propose Deep Data Consistency (DDC) to update the data consistency step with a deep learning model when solving inverse problems with diffusion models.
In comparison with state-of-the-art methods in linear and non-linear tasks, DDC demonstrates its outstanding performance of both similarity and realness metrics.
arXiv Detail & Related papers (2024-05-17T12:54:43Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.