AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse
- URL: http://arxiv.org/abs/2504.10540v1
- Date: Sun, 13 Apr 2025 08:29:58 GMT
- Title: AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse
- Authors: Zichao Yu, Zhen Zou, Guojiang Shao, Chengwei Zhang, Shengze Xu, Jie Huang, Feng Zhao, Xiaodong Cun, Wenyi Zhang,
- Abstract summary: Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference.<n>We provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method.<n>We propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results.
- Score: 19.13826316844611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference, limiting their practicality. While existing acceleration methods exploit the well-known U-shaped similarity pattern between adjacent steps through caching mechanisms, they lack theoretical foundation and rely on simplistic computation reuse, often leading to performance degradation. In this work, we provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method, revealing a linear relationship between the outputs of consecutive steps. This analysis explains why the outputs of adjacent steps exhibit a U-shaped pattern. Furthermore, extending Adams-Bashforth method to higher order, we propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results, with a truncation error bound of only \(O(h^k)\) where $h$ is the step size. Extensive validation across diverse image and video diffusion models (including HunyuanVideo and FLUX.1-dev) with various schedulers demonstrates our method's effectiveness in achieving nearly $3\times$ speedup while maintaining original performance levels, offering a practical real-time solution without compromising generation quality.
Related papers
- Efficient Diffusion Training through Parallelization with Truncated Karhunen-Loève Expansion [5.770347328961063]
Diffusion denoising models suffer from slow convergence during training.<n>We propose a novel forward-time process for training and sampling.<n>Our method significantly outperforms baseline diffusion models.
arXiv Detail & Related papers (2025-03-22T05:34:02Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization [22.546989373687655]
We propose a novel pruning method that derives an efficient diffusion model via a more intelligent and differentiable pruner.
Our approach achieves 4.4 x speedup for SD-1.5 without any loss of accuracy, significantly outperforming the previous state-of-the-art methods.
arXiv Detail & Related papers (2024-10-22T12:18:24Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - Post-Processing Temporal Action Detection [134.26292288193298]
Temporal Action Detection (TAD) methods typically take a pre-processing step in converting an input varying-length video into a fixed-length snippet representation sequence.
This pre-processing step would temporally downsample the video, reducing the inference resolution and hampering the detection performance in the original temporal resolution.
We introduce a novel model-agnostic post-processing method without model redesign and retraining.
arXiv Detail & Related papers (2022-11-27T19:50:37Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
Recent developments in approaches based on deep learning have achieved sub-second runtimes for DiffIR.
We propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields.
We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields.
arXiv Detail & Related papers (2021-09-26T19:56:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.