Brain informed transfer learning for categorizing construction hazards
- URL: http://arxiv.org/abs/2211.12420v1
- Date: Thu, 17 Nov 2022 19:41:04 GMT
- Title: Brain informed transfer learning for categorizing construction hazards
- Authors: Xiaoshan Zhou and Pin-Chao Liao
- Abstract summary: This work is a step toward improving machine learning algorithms by learning from human-brain signals recorded via a commercially available brain-computer interface.
More generalized visual recognition systems can be effectively developed based on this approach of "keep human in the loop"
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A transfer learning paradigm is proposed for "knowledge" transfer between the
human brain and convolutional neural network (CNN) for a construction hazard
categorization task. Participants' brain activities are recorded using
electroencephalogram (EEG) measurements when viewing the same images (target
dataset) as the CNN. The CNN is pretrained on the EEG data and then fine-tuned
on the construction scene images. The results reveal that the EEG-pretrained
CNN achieves a 9 % higher accuracy compared with a network with same
architecture but randomly initialized parameters on a three-class
classification task. Brain activity from the left frontal cortex exhibits the
highest performance gains, thus indicating high-level cognitive processing
during hazard recognition. This work is a step toward improving machine
learning algorithms by learning from human-brain signals recorded via a
commercially available brain-computer interface. More generalized visual
recognition systems can be effectively developed based on this approach of
"keep human in the loop".
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks.
ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images.
The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset.
arXiv Detail & Related papers (2024-04-18T15:28:34Z) - Decoding visual brain representations from electroencephalography
through Knowledge Distillation and latent diffusion models [0.12289361708127873]
We present an innovative method that employs to classify and reconstruct images from the ImageNet dataset using electroencephalography (EEG) data.
We analyzed EEG recordings from 6 participants, each exposed to 50 images spanning 40 unique semantic categories.
We incorporated an image reconstruction mechanism based on pre-trained latent diffusion models, which allowed us to generate an estimate of the images which had elicited EEG activity.
arXiv Detail & Related papers (2023-09-08T09:13:50Z) - Classification of EEG Motor Imagery Using Deep Learning for
Brain-Computer Interface Systems [79.58173794910631]
A trained T1 class Convolutional Neural Network (CNN) model will be used to examine its ability to successfully identify motor imagery.
In theory, and if the model has been trained accurately, it should be able to identify a class and label it accordingly.
The CNN model will then be restored and used to try and identify the same class of motor imagery data using much smaller sampled data.
arXiv Detail & Related papers (2022-05-31T17:09:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - EEG-based Classification of Drivers Attention using Convolutional Neural
Network [0.0]
This study compares the performance of several attention classifiers trained on participants brain activity.
CNN model trained on raw EEG data obtained under kinesthetic feedback achieved the highest accuracy 89%.
Our findings show that CNN and raw EEG signals can be employed for effective training of a passive BCI for real-time attention classification.
arXiv Detail & Related papers (2021-08-23T10:55:52Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.