A Neural-Network-Based Convex Regularizer for Inverse Problems
- URL: http://arxiv.org/abs/2211.12461v3
- Date: Fri, 25 Aug 2023 11:53:01 GMT
- Title: A Neural-Network-Based Convex Regularizer for Inverse Problems
- Authors: Alexis Goujon, Sebastian Neumayer, Pakshal Bohra, Stanislas Ducotterd,
Michael Unser
- Abstract summary: Deep-learning methods to solve image-reconstruction problems have enabled a significant increase in reconstruction quality.
These new methods often lack reliability and explainability, and there is a growing interest to address these shortcomings.
In this work, we tackle this issue by revisiting regularizers that are the sum of convex-ridge functions.
The gradient of such regularizers is parameterized by a neural network that has a single hidden layer with increasing and learnable activation functions.
- Score: 14.571246114579468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of deep-learning-based methods to solve image-reconstruction
problems has enabled a significant increase in reconstruction quality.
Unfortunately, these new methods often lack reliability and explainability, and
there is a growing interest to address these shortcomings while retaining the
boost in performance. In this work, we tackle this issue by revisiting
regularizers that are the sum of convex-ridge functions. The gradient of such
regularizers is parameterized by a neural network that has a single hidden
layer with increasing and learnable activation functions. This neural network
is trained within a few minutes as a multistep Gaussian denoiser. The numerical
experiments for denoising, CT, and MRI reconstruction show improvements over
methods that offer similar reliability guarantees.
Related papers
- Convergence Guarantees of Overparametrized Wide Deep Inverse Prior [1.5362025549031046]
Inverse Priors is an unsupervised approach to transform a random input into an object whose image under the forward model matches the observation.
We provide overparametrization bounds under which such network trained via continuous-time gradient descent will converge exponentially fast with high probability.
This work is thus a first step towards a theoretical understanding of overparametrized DIP networks, and more broadly it participates to the theoretical understanding of neural networks in inverse problem settings.
arXiv Detail & Related papers (2023-03-20T16:49:40Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Overcoming the Spectral Bias of Neural Value Approximation [17.546011419043644]
Value approximation using deep neural networks is often the primary module that provides learning signals to the rest of the algorithm.
Recent works in neural kernel regression suggest the presence of a spectral bias, where fitting high-frequency components of the value function requires exponentially more gradient update steps than the low-frequency ones.
We re-examine off-policy reinforcement learning through the lens of kernel regression and propose to overcome such bias via a composite neural kernel.
arXiv Detail & Related papers (2022-06-09T17:59:57Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Denoising Score-Matching for Uncertainty Quantification in Inverse
Problems [1.521936393554569]
We propose a generic Bayesian framework forsolving inverse problems, in which we limit the use of deep neural networks tolearning a prior distribution on the signals to recover.
We apply this framework to Magnetic ResonanceImage (MRI) reconstruction and illustrate how this approach can also be used to assess the uncertainty on particularfeatures of a reconstructed image.
arXiv Detail & Related papers (2020-11-16T18:33:06Z) - Solving Inverse Problems With Deep Neural Networks -- Robustness
Included? [3.867363075280544]
Recent works have pointed out instabilities of deep neural networks for several image reconstruction tasks.
In analogy to adversarial attacks in classification, it was shown that slight distortions in the input domain may cause severe artifacts.
This article sheds new light on this concern, by conducting an extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems.
arXiv Detail & Related papers (2020-11-09T09:33:07Z) - Self-Organized Operational Neural Networks for Severe Image Restoration
Problems [25.838282412957675]
Discnative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs.
We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems.
We propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly.
arXiv Detail & Related papers (2020-08-29T02:19:41Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.