Denoising Score-Matching for Uncertainty Quantification in Inverse
Problems
- URL: http://arxiv.org/abs/2011.08698v1
- Date: Mon, 16 Nov 2020 18:33:06 GMT
- Title: Denoising Score-Matching for Uncertainty Quantification in Inverse
Problems
- Authors: Zaccharie Ramzi, Benjamin Remy, Francois Lanusse, Jean-Luc Starck,
Philippe Ciuciu
- Abstract summary: We propose a generic Bayesian framework forsolving inverse problems, in which we limit the use of deep neural networks tolearning a prior distribution on the signals to recover.
We apply this framework to Magnetic ResonanceImage (MRI) reconstruction and illustrate how this approach can also be used to assess the uncertainty on particularfeatures of a reconstructed image.
- Score: 1.521936393554569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have proven extremely efficient at solving a wide
rangeof inverse problems, but most often the uncertainty on the solution they
provideis hard to quantify. In this work, we propose a generic Bayesian
framework forsolving inverse problems, in which we limit the use of deep neural
networks tolearning a prior distribution on the signals to recover. We adopt
recent denoisingscore matching techniques to learn this prior from data, and
subsequently use it aspart of an annealed Hamiltonian Monte-Carlo scheme to
sample the full posteriorof image inverse problems. We apply this framework to
Magnetic ResonanceImage (MRI) reconstruction and illustrate how this approach
not only yields highquality reconstructions but can also be used to assess the
uncertainty on particularfeatures of a reconstructed image.
Related papers
- Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - A Neural-Network-Based Convex Regularizer for Inverse Problems [14.571246114579468]
Deep-learning methods to solve image-reconstruction problems have enabled a significant increase in reconstruction quality.
These new methods often lack reliability and explainability, and there is a growing interest to address these shortcomings.
In this work, we tackle this issue by revisiting regularizers that are the sum of convex-ridge functions.
The gradient of such regularizers is parameterized by a neural network that has a single hidden layer with increasing and learnable activation functions.
arXiv Detail & Related papers (2022-11-22T18:19:10Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Solving Inverse Problems With Deep Neural Networks -- Robustness
Included? [3.867363075280544]
Recent works have pointed out instabilities of deep neural networks for several image reconstruction tasks.
In analogy to adversarial attacks in classification, it was shown that slight distortions in the input domain may cause severe artifacts.
This article sheds new light on this concern, by conducting an extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems.
arXiv Detail & Related papers (2020-11-09T09:33:07Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Learned convex regularizers for inverse problems [3.294199808987679]
We propose to learn a data-adaptive input- neural network (ICNN) as a regularizer for inverse problems.
We prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations.
We show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
arXiv Detail & Related papers (2020-08-06T18:58:35Z) - Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser [7.7288480250888]
We develop a robust and general methodology for making use of implicit priors in deep neural networks.
A CNN trained to perform blind (i.e., with unknown noise level) least-squares denoising is presented.
A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any linear inverse problem.
arXiv Detail & Related papers (2020-07-27T15:40:46Z) - Solving Inverse Problems with a Flow-based Noise Model [100.18560761392692]
We study image inverse problems with a normalizing flow prior.
Our formulation views the solution as the maximum a posteriori estimate of the image conditioned on the measurements.
We empirically validate the efficacy of our method on various inverse problems, including compressed sensing with quantized measurements and denoising with highly structured noise patterns.
arXiv Detail & Related papers (2020-03-18T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.