GRATIS: Deep Learning Graph Representation with Task-specific Topology
and Multi-dimensional Edge Features
- URL: http://arxiv.org/abs/2211.12482v1
- Date: Sat, 19 Nov 2022 18:42:55 GMT
- Title: GRATIS: Deep Learning Graph Representation with Task-specific Topology
and Multi-dimensional Edge Features
- Authors: Siyang Song, Yuxin Song, Cheng Luo, Zhiyuan Song, Selim Kuzucu, Xi
Jia, Zhijiang Guo, Weicheng Xie, Linlin Shen, and Hatice Gunes
- Abstract summary: We propose the first general graph representation learning framework (called GRATIS)
It can generate a strong graph representation with a task-specific topology and task-specific multi-dimensional edge features from any arbitrary input.
Our framework is effective, robust and flexible, and is a plug-and-play module that can be combined with different backbones and Graph Neural Networks (GNNs)
- Score: 27.84193444151138
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graph is powerful for representing various types of real-world data. The
topology (edges' presence) and edges' features of a graph decides the message
passing mechanism among vertices within the graph. While most existing
approaches only manually define a single-value edge to describe the
connectivity or strength of association between a pair of vertices,
task-specific and crucial relationship cues may be disregarded by such manually
defined topology and single-value edge features. In this paper, we propose the
first general graph representation learning framework (called GRATIS) which can
generate a strong graph representation with a task-specific topology and
task-specific multi-dimensional edge features from any arbitrary input. To
learn each edge's presence and multi-dimensional feature, our framework takes
both of the corresponding vertices pair and their global contextual information
into consideration, enabling the generated graph representation to have a
globally optimal message passing mechanism for different down-stream tasks. The
principled investigation results achieved for various graph analysis tasks on
11 graph and non-graph datasets show that our GRATIS can not only largely
enhance pre-defined graphs but also learns a strong graph representation for
non-graph data, with clear performance improvements on all tasks. In
particular, the learned topology and multi-dimensional edge features provide
complementary task-related cues for graph analysis tasks. Our framework is
effective, robust and flexible, and is a plug-and-play module that can be
combined with different backbones and Graph Neural Networks (GNNs) to generate
a task-specific graph representation from various graph and non-graph data. Our
code is made publicly available at
https://github.com/SSYSteve/Learning-Graph-Representation-with-Task-specific-Topology-and-Multi-dime nsional-Edge-Features.
Related papers
- RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)
RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.
During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAGs) can generalize to unseen graphs and tasks across diverse domains.
We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks.
We demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer.
arXiv Detail & Related papers (2024-02-21T09:06:31Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - One for All: Towards Training One Graph Model for All Classification Tasks [61.656962278497225]
A unified model for various graph tasks remains underexplored, primarily due to the challenges unique to the graph learning domain.
We propose textbfOne for All (OFA), the first general framework that can use a single graph model to address the above challenges.
OFA performs well across different tasks, making it the first general-purpose across-domains classification model on graphs.
arXiv Detail & Related papers (2023-09-29T21:15:26Z) - HUGE: Huge Unsupervised Graph Embeddings with TPUs [6.108914274067702]
Graph Embedding is a process of creating a continuous representation of nodes in a graph.
A high-performance graph embedding architecture leveraging amounts of high-bandwidth memory is presented.
We verify the embedding space quality on real and synthetic large-scale datasets.
arXiv Detail & Related papers (2023-07-26T20:29:15Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.