論文の概要: Smart Agriculture : A Novel Multilevel Approach for Agricultural Risk
Assessment over Unstructured Data
- arxiv url: http://arxiv.org/abs/2211.12515v1
- Date: Tue, 22 Nov 2022 16:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 13:45:06.440516
- Title: Smart Agriculture : A Novel Multilevel Approach for Agricultural Risk
Assessment over Unstructured Data
- Title(参考訳): スマート農業 : 非構造化データによる農業リスク評価のための多段階的アプローチ
- Authors: Hasna Najmi and Mounia Mikram and Maryem Rhanoui and Siham Yousfi
- Abstract要約: 不確実性とは、将来何が起こるかわからない状態を指す。
本稿では、自然言語処理と機械学習技術を活用して不確実性をモデル化し、大量のテキストデータを用いて各不確実性クラスタのリスクレベルを評価することを目的とする。
- 参考スコア(独自算出の注目度): 0.5735035463793008
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting opportunities and threats from massive text data is a challenging
task for most. Traditionally, companies would rely mainly on structured data to
detect and predict risks, losing a huge amount of information that could be
extracted from unstructured text data. Fortunately, artificial intelligence
came to remedy this issue by innovating in data extraction and processing
techniques, allowing us to understand and make use of Natural Language data and
turning it into structures that a machine can process and extract insight from.
Uncertainty refers to a state of not knowing what will happen in the future.
This paper aims to leverage natural language processing and machine learning
techniques to model uncertainties and evaluate the risk level in each
uncertainty cluster using massive text data.
- Abstract(参考訳): 大量のテキストデータから機会や脅威を検出することは、ほとんどの人にとって難しい課題だ。
従来、企業は構造化されたデータに頼ってリスクを検出し、予測し、構造化されていないテキストデータから抽出できる膨大な量の情報を失う。
幸いなことに、人工知能はデータの抽出と処理技術を革新し、自然言語データの理解と利用を可能にし、それを機械が処理し、洞察を抽出できる構造に変えることで、この問題を解決した。
不確実性とは、将来何が起こるかわからない状態を指す。
本稿では,自然言語処理と機械学習を用いて不確実性をモデル化し,大量のテキストデータを用いて各不確実性クラスタのリスクレベルを評価することを目的とする。
関連論文リスト
- Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
テキストが人工知能(AI)によって作成されたかどうかを知ることは、その信頼性を決定する上で重要である。
AIGT検出に対する最先端のアプローチには、透かし、統計学的およびスタイリスティック分析、機械学習分類などがある。
AIGTテキストがどのようなシナリオで「検出可能」であるかを判断するために、結合する健全な要因についての洞察を提供することを目指している。
論文 参考訳(メタデータ) (2024-06-21T18:31:49Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Text2Data: Low-Resource Data Generation with Textual Control [100.5970757736845]
Text2Dataは、ラベルのないデータを使って基盤となるデータ配布を理解する新しいアプローチである。
制御性を確保し、破滅的な忘れを効果的に防止する、制約最適化に基づく新たな学習目標を通じて微調整を行う。
論文 参考訳(メタデータ) (2024-02-08T03:41:39Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
我々は,大規模言語モデル(LLM)を利用した化学AIエージェントを開発し,自然言語テキストから構造化データセットを作成する。
化学者のAIエージェントであるEunomiaは、何十年もの科学研究論文から既存の知識を活用して、行動を計画し実行することができる。
論文 参考訳(メタデータ) (2023-12-18T20:29:58Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
イベント抽出は、テキストから事前に定義されたイベントトリガと引数を認識することを目的としている。
最近のデータ拡張手法は文法的誤りの問題を無視することが多い。
本稿では,イベント抽出DAEEのための記述構造からテキストへの拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T16:52:07Z) - Toward the Automated Construction of Probabilistic Knowledge Graphs for
the Maritime Domain [60.76554773885988]
国際海事犯罪はますます高度化しており、より広い犯罪ネットワークと結びついていることが多い。
これは、ハードデータと他のタイプのデータを組み合わせることを目的とした研究と開発に繋がった。
本稿では,確率的知識グラフの自動構築のためのプロトタイプであるMaritime DeepDiveを提案する。
論文 参考訳(メタデータ) (2023-05-04T00:24:30Z) - "FIJO": a French Insurance Soft Skill Detection Dataset [0.0]
本稿では、多くのソフトスキルアノテーションを含む保険業務のオファーを含む新しい公開データセットFIJOを提案する。
名前付きエンティティ認識を用いたスキル検出アルゴリズムの結果を提示し、トランスフォーマーベースのモデルがこのデータセット上で優れたトークンワイズ性能を示すことを示す。
論文 参考訳(メタデータ) (2022-04-11T15:54:22Z) - Occams Razor for Big Data? On Detecting Quality in Large Unstructured
Datasets [0.0]
分析複雑性への新たな傾向は、科学におけるパシモニーやオッカム・ラザーの原理にとって深刻な課題である。
データクラスタリングのための計算的ビルディングブロックアプローチは、最小の計算時間で大規模な非構造化データセットを扱うのに役立つ。
このレビューは、東西の文化的な違いがビッグデータ分析の過程にどのように影響するかを結論付けている。
論文 参考訳(メタデータ) (2020-11-12T16:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。