論文の概要: Dehazed Image Quality Evaluation: From Partial Discrepancy to Blind
Perception
- arxiv url: http://arxiv.org/abs/2211.12636v1
- Date: Tue, 22 Nov 2022 23:49:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 16:00:22.610667
- Title: Dehazed Image Quality Evaluation: From Partial Discrepancy to Blind
Perception
- Title(参考訳): dehazed image quality evaluation: 部分的不一致から視覚障害まで
- Authors: Wei Zhou, Ruizeng Zhang, Leida Li, Hantao Liu, Huiyan Chen
- Abstract要約: 画像のデハジングは、ぼんやりとした画像から空間的詳細を復元することを目的としている。
本稿では,部分的不一致に基づく画像品質評価手法を提案する。
Blind Perceptionを用いたNo-Reference品質評価尺度に拡張する。
- 参考スコア(独自算出の注目度): 35.257798506356814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image dehazing aims to restore spatial details from hazy images. There have
emerged a number of image dehazing algorithms, designed to increase the
visibility of those hazy images. However, much less work has been focused on
evaluating the visual quality of dehazed images. In this paper, we propose a
Reduced-Reference dehazed image quality evaluation approach based on Partial
Discrepancy (RRPD) and then extend it to a No-Reference quality assessment
metric with Blind Perception (NRBP). Specifically, inspired by the hierarchical
characteristics of the human perceiving dehazed images, we introduce three
groups of features: luminance discrimination, color appearance, and overall
naturalness. In the proposed RRPD, the combined distance between a set of
sender and receiver features is adopted to quantify the perceptually dehazed
image quality. By integrating global and local channels from dehazed images,
the RRPD is converted to NRBP which does not rely on any information from the
references. Extensive experiment results on several dehazed image quality
databases demonstrate that our proposed methods outperform state-of-the-art
full-reference, reduced-reference, and no-reference quality assessment models.
Furthermore, we show that the proposed dehazed image quality evaluation methods
can be effectively applied to tune parameters for potential image dehazing
algorithms.
- Abstract(参考訳): 画像デハジングは、ヘージーな画像から空間的な詳細を復元することを目的としている。
これらの画像の可視性を高めるために設計された画像デヘイジングアルゴリズムが数多く登場している。
しかしながら、デハズド画像の視覚的品質を評価することに注力する作業ははるかに少ない。
本稿では,部分的不一致(RRPD)に基づく画像品質評価手法を提案し,それをブラインド知覚(NRBP)を用いた非参照品質評価尺度に拡張する。
具体的には,ヒトの脱ハズ画像の階層的特徴に着想を得て,輝度識別,色彩の外観,全体的な自然さの3つの特徴群を紹介した。
提案したRRPDでは,送信機と受信機の特徴の組合せによる画像品質の定量化が可能である。
デハズされた画像からグローバルチャネルとローカルチャネルを統合することで、rrpdは参照からの情報に依存しないnrbpに変換される。
複数のデハズド画像品質データベースに対する大規模な実験結果から,提案手法が最先端の完全参照,縮小参照,非参照品質評価モデルより優れていることが示された。
さらに,提案手法を応用して,潜在的な画像デハジングアルゴリズムのパラメータをチューニングできることを示した。
関連論文リスト
- Fine-grained subjective visual quality assessment for high-fidelity compressed images [4.787528476079247]
JPEG標準化プロジェクトであるAICは、高忠実度画像に対する主観的な画質評価手法を開発している。
本稿では,提案手法,高品質な圧縮画像のデータセット,およびそれに対応するクラウドソースによる視覚的品質評価について述べる。
また、単に目立った差分(JND)単位で品質スケールの値を再構築するデータ分析のアプローチも概説している。
論文 参考訳(メタデータ) (2024-10-12T11:37:19Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA)は、全方位画像(ODI)の人間の知覚品質を客観的に評価することを目的としている。
ODIの品質評価は、既存のBOIQAパイプラインがオブザーバのブラウジングプロセスのモデリングを欠いているという事実によって著しく妨げられている。
Assessor360と呼ばれるBOIQAのための新しいマルチシーケンスネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-18T13:55:28Z) - Gap-closing Matters: Perceptual Quality Evaluation and Optimization of Low-Light Image Enhancement [55.8106019031768]
低照度画像強調手法の最適化は、エンドユーザーが認識する視覚的品質によって導かれるべきであるという研究コミュニティの見解が高まりつつある。
主観的品質と客観的品質を体系的に評価するためのギャップ閉鎖フレームワークを提案する。
提案手法の有効性を,画質予測の精度と画像強調の知覚品質の両面から検証する。
論文 参考訳(メタデータ) (2023-02-22T15:57:03Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - No-Reference Image Quality Assessment by Hallucinating Pristine Features [24.35220427707458]
本稿では,特徴レベルの擬似参照(PR)幻覚を用いた非参照画像品質評価(IQA)手法を提案する。
提案手法の有効性を4つのIQAデータベースで実証した。
論文 参考訳(メタデータ) (2021-08-09T16:48:34Z) - Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images [7.628527132779575]
GANの注目すべき応用の1つは、ディープフェイク(deep fakes)として知られる偽の人間の顔を開発することである。
生成された画像の品質を測定することは本質的に主観的だが、標準化されたメトリクスを使って品質を客観化しようとする試みがなされている。
我々は,より広い視覚的欠陥をカバーするために,低レベルの特徴を統合することにより,評価プロセスの堅牢性を向上させることを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:53:27Z) - Recognition Oriented Iris Image Quality Assessment in the Feature Space [40.615018679370685]
現実のシナリオで撮影された虹彩画像の大部分は、制御されていない環境と非協調的な対象のために品質が劣っている。
従来の因子ベースの手法は、ほとんどの画像を捨て、システムタイムアウトを引き起こし、ユーザーエクスペリエンスを損なう。
アイリス画像の認識指向品質指標と評価法を提案し,その問題に対処する。
論文 参考訳(メタデータ) (2020-09-01T08:58:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。