Interpretability of an Interaction Network for identifying $H
\rightarrow b\bar{b}$ jets
- URL: http://arxiv.org/abs/2211.12770v1
- Date: Wed, 23 Nov 2022 08:38:52 GMT
- Title: Interpretability of an Interaction Network for identifying $H
\rightarrow b\bar{b}$ jets
- Authors: Avik Roy, Mark S. Neubauer
- Abstract summary: In recent times, AI models based on deep neural networks are becoming increasingly popular for many of these applications.
We explore interpretability of AI models by examining an Interaction Network (IN) model designed to identify boosted $Hto bbarb$ jets.
We additionally illustrate the activity of hidden layers within the IN model as Neural Activation Pattern (NAP) diagrams.
- Score: 4.553120911976256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate techniques and machine learning models have found numerous
applications in High Energy Physics (HEP) research over many years. In recent
times, AI models based on deep neural networks are becoming increasingly
popular for many of these applications. However, neural networks are regarded
as black boxes -- because of their high degree of complexity it is often quite
difficult to quantitatively explain the output of a neural network by
establishing a tractable input-output relationship and information propagation
through the deep network layers. As explainable AI (xAI) methods are becoming
more popular in recent years, we explore interpretability of AI models by
examining an Interaction Network (IN) model designed to identify boosted $H\to
b\bar{b}$ jets amid QCD background. We explore different quantitative methods
to demonstrate how the classifier network makes its decision based on the
inputs and how this information can be harnessed to reoptimize the model-making
it simpler yet equally effective. We additionally illustrate the activity of
hidden layers within the IN model as Neural Activation Pattern (NAP) diagrams.
Our experiments suggest NAP diagrams reveal important information about how
information is conveyed across the hidden layers of deep model. These insights
can be useful to effective model reoptimization and hyperparameter tuning.
Related papers
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - GreenLightningAI: An Efficient AI System with Decoupled Structural and
Quantitative Knowledge [0.0]
Training powerful and popular deep neural networks comes at very high economic and environmental costs.
This work takes a radically different approach by proposing GreenLightningAI.
The new AI system stores the information required to select the system subset for a given sample.
We show experimentally that the structural information can be kept unmodified when re-training the AI system with new samples.
arXiv Detail & Related papers (2023-12-15T17:34:11Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
Recent developments in explainable AI (XAI) allow researchers to explore the inner workings of deep neural networks (DNNs)
We explore interpretability of models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC)
Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models.
arXiv Detail & Related papers (2022-10-09T23:02:42Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - From Boltzmann Machines to Neural Networks and Back Again [31.613544605376624]
We give new results for learning Restricted Boltzmann Machines, probably the most well-studied class of latent variable models.
Our results are based on new connections to learning two-layer neural networks under $ell_infty$ bounded input.
We then give an algorithm for learning a natural class of supervised RBMs with better runtime than what is possible for its related class of networks without distributional assumptions.
arXiv Detail & Related papers (2020-07-25T00:42:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.