Semi-Supervised Lifelong Language Learning
- URL: http://arxiv.org/abs/2211.13050v1
- Date: Wed, 23 Nov 2022 15:51:33 GMT
- Title: Semi-Supervised Lifelong Language Learning
- Authors: Yingxiu Zhao, Yinhe Zheng, Bowen Yu, Zhiliang Tian, Dongkyu Lee, Jian
Sun, Haiyang Yu, Yongbin Li, Nevin L. Zhang
- Abstract summary: We explore a novel setting, semi-supervised lifelong language learning (SSLL), where a model learns sequentially arriving language tasks with both labeled and unlabeled data.
Specially, we dedicate task-specific modules to alleviate catastrophic forgetting and design two modules to exploit unlabeled data.
Experimental results on various language tasks demonstrate our model's effectiveness and superiority over competitive baselines.
- Score: 81.0685290973989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lifelong learning aims to accumulate knowledge and alleviate catastrophic
forgetting when learning tasks sequentially. However, existing lifelong
language learning methods only focus on the supervised learning setting.
Unlabeled data, which can be easily accessed in real-world scenarios, are
underexplored. In this paper, we explore a novel setting, semi-supervised
lifelong language learning (SSLL), where a model learns sequentially arriving
language tasks with both labeled and unlabeled data. We propose an unlabeled
data enhanced lifelong learner to explore SSLL. Specially, we dedicate
task-specific modules to alleviate catastrophic forgetting and design two
modules to exploit unlabeled data: (1) a virtual supervision enhanced task
solver is constructed on a teacher-student framework to mine the underlying
knowledge from unlabeled data; and (2) a backward augmented learner is built to
encourage knowledge transfer from newly arrived unlabeled data to previous
tasks. Experimental results on various language tasks demonstrate our model's
effectiveness and superiority over competitive baselines under the new setting
SSLL.
Related papers
- Tabular Transfer Learning via Prompting LLMs [52.96022335067357]
We propose a novel framework, Prompt to Transfer (P2T), that utilizes unlabeled (or heterogeneous) source data with large language models (LLMs)
P2T identifies a column feature in a source dataset that is strongly correlated with a target task feature to create examples relevant to the target task, thus creating pseudo-demonstrations for prompts.
arXiv Detail & Related papers (2024-08-09T11:30:52Z) - Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
Continual learning allows models to learn from new data while retaining previously learned knowledge.
The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes.
We propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings.
arXiv Detail & Related papers (2024-08-02T07:51:44Z) - Learning to Learn for Few-shot Continual Active Learning [9.283518682371756]
Continual learning strives to ensure stability in solving previously seen tasks while demonstrating plasticity in a novel domain.
Recent advances in continual learning are mostly confined to a supervised learning setting, especially in NLP domain.
We exploit meta-learning and propose a method, called Meta-Continual Active Learning.
arXiv Detail & Related papers (2023-11-07T05:22:11Z) - Learning without Forgetting for Vision-Language Models [65.49600786387106]
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world.
Recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations.
We propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting.
arXiv Detail & Related papers (2023-05-30T17:59:32Z) - Learning to Predict Gradients for Semi-Supervised Continual Learning [36.715712711431856]
Key challenge for machine intelligence is to learn new visual concepts without forgetting the previously acquired knowledge.
There is a gap between existing supervised continual learning and human-like intelligence, where human is able to learn from both labeled and unlabeled data.
We formulate a new semi-supervised continual learning method, which can be generically applied to existing continual learning models.
arXiv Detail & Related papers (2022-01-23T06:45:47Z) - Towards Lifelong Learning of Multilingual Text-To-Speech Synthesis [87.75833205560406]
This work presents a lifelong learning approach to train a multilingual Text-To-Speech (TTS) system.
It does not require pooled data from all languages altogether, and thus alleviates the storage and computation burden.
arXiv Detail & Related papers (2021-10-09T07:00:38Z) - Meta-Learning with Sparse Experience Replay for Lifelong Language
Learning [26.296412053816233]
We propose a novel approach to lifelong learning of language tasks based on meta-learning with sparse experience replay.
We show that under the realistic setting of performing a single pass on a stream of tasks, our method obtains state-of-the-art results on lifelong text classification and relation extraction.
arXiv Detail & Related papers (2020-09-10T14:36:38Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.