Learning to Learn for Few-shot Continual Active Learning
- URL: http://arxiv.org/abs/2311.03732v4
- Date: Fri, 31 May 2024 03:07:23 GMT
- Title: Learning to Learn for Few-shot Continual Active Learning
- Authors: Stella Ho, Ming Liu, Shang Gao, Longxiang Gao,
- Abstract summary: Continual learning strives to ensure stability in solving previously seen tasks while demonstrating plasticity in a novel domain.
Recent advances in continual learning are mostly confined to a supervised learning setting, especially in NLP domain.
We exploit meta-learning and propose a method, called Meta-Continual Active Learning.
- Score: 9.283518682371756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning strives to ensure stability in solving previously seen tasks while demonstrating plasticity in a novel domain. Recent advances in continual learning are mostly confined to a supervised learning setting, especially in NLP domain. In this work, we consider a few-shot continual active learning setting where labeled data are inadequate, and unlabeled data are abundant but with a limited annotation budget. We exploit meta-learning and propose a method, called Meta-Continual Active Learning. This method sequentially queries the most informative examples from a pool of unlabeled data for annotation to enhance task-specific performance and tackle continual learning problems through meta-objective. Specifically, we employ meta-learning and experience replay to address inter-task confusion and catastrophic forgetting. We further incorporate textual augmentations to avoid memory over-fitting caused by experience replay and sample queries, thereby ensuring generalization. We conduct extensive experiments on benchmark text classification datasets from diverse domains to validate the feasibility and effectiveness of meta-continual active learning. We also analyze the impact of different active learning strategies on various meta continual learning models. The experimental results demonstrate that introducing randomness into sample selection is the best default strategy for maintaining generalization in meta-continual learning framework.
Related papers
- COOLer: Class-Incremental Learning for Appearance-Based Multiple Object
Tracking [32.47215340215641]
This paper extends the scope of continual learning research to class-incremental learning for multiple object tracking (MOT)
Previous solutions for continual learning of object detectors do not address the data association stage of appearance-based trackers.
We introduce COOLer, a COntrastive- and cOntinual-Learning-based tracker, which incrementally learns to track new categories while preserving past knowledge.
arXiv Detail & Related papers (2023-10-04T17:49:48Z) - VERSE: Virtual-Gradient Aware Streaming Lifelong Learning with Anytime
Inference [36.61783715563126]
Streaming lifelong learning is a challenging setting of lifelong learning with the goal of continuous learning without forgetting.
We introduce a novel approach to lifelong learning, which is streaming (observes each training example only once)
We propose a novel emphvirtual gradients based approach for continual representation learning which adapts to each new example while also generalizing well on past data to prevent catastrophic forgetting.
arXiv Detail & Related papers (2023-09-15T07:54:49Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
We study multi-label classification in the continual scenario for the first time.
We propose an efficient approach that has a logarithmic complexity with regard to the number of tasks.
We validate our approach on a real-world multi-label Forecasting problem from the packaging industry.
arXiv Detail & Related papers (2022-08-08T15:58:39Z) - Reinforced Meta Active Learning [11.913086438671357]
We present an online stream-based meta active learning method which learns on the fly an informativeness measure directly from the data.
The method is based on reinforcement learning and combines episodic policy search and a contextual bandits approach.
We demonstrate on several real datasets that this method learns to select training samples more efficiently than existing state-of-the-art methods.
arXiv Detail & Related papers (2022-03-09T08:36:54Z) - Knowledge-Aware Meta-learning for Low-Resource Text Classification [87.89624590579903]
This paper studies a low-resource text classification problem and bridges the gap between meta-training and meta-testing tasks.
We propose KGML to introduce additional representation for each sentence learned from the extracted sentence-specific knowledge graph.
arXiv Detail & Related papers (2021-09-10T07:20:43Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Variable-Shot Adaptation for Online Meta-Learning [123.47725004094472]
We study the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks.
We find that meta-learning solves the full task set with fewer overall labels and greater cumulative performance, compared to standard supervised methods.
These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
arXiv Detail & Related papers (2020-12-14T18:05:24Z) - Meta-Learning with Sparse Experience Replay for Lifelong Language
Learning [26.296412053816233]
We propose a novel approach to lifelong learning of language tasks based on meta-learning with sparse experience replay.
We show that under the realistic setting of performing a single pass on a stream of tasks, our method obtains state-of-the-art results on lifelong text classification and relation extraction.
arXiv Detail & Related papers (2020-09-10T14:36:38Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.