Autonomous Marker-less Rapid Aerial Grasping
- URL: http://arxiv.org/abs/2211.13093v3
- Date: Tue, 5 Mar 2024 19:41:54 GMT
- Title: Autonomous Marker-less Rapid Aerial Grasping
- Authors: Erik Bauer, Barnabas Gavin Cangan, Robert K. Katzschmann
- Abstract summary: We propose a vision-based system for autonomous rapid aerial grasping.
We generate a dense point cloud of the detected objects and perform geometry-based grasp planning.
We show the first use of geometry-based grasping techniques with a flying platform.
- Score: 5.892028494793913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a future with autonomous robots, visual and spatial perception is of
utmost importance for robotic systems. Particularly for aerial robotics, there
are many applications where utilizing visual perception is necessary for any
real-world scenarios. Robotic aerial grasping using drones promises fast
pick-and-place solutions with a large increase in mobility over other robotic
solutions. Utilizing Mask R-CNN scene segmentation (detectron2), we propose a
vision-based system for autonomous rapid aerial grasping which does not rely on
markers for object localization and does not require the appearance of the
object to be previously known. Combining segmented images with spatial
information from a depth camera, we generate a dense point cloud of the
detected objects and perform geometry-based grasp planning to determine
grasping points on the objects. In real-world experiments on a dynamically
grasping aerial platform, we show that our system can replicate the performance
of a motion capture system for object localization up to 94.5 % of the baseline
grasping success rate. With our results, we show the first use of
geometry-based grasping techniques with a flying platform and aim to increase
the autonomy of existing aerial manipulation platforms, bringing them further
towards real-world applications in warehouses and similar environments.
Related papers
- Enhancing Autonomous Navigation by Imaging Hidden Objects using Single-Photon LiDAR [12.183773707869069]
We present a novel approach that leverages Non-Line-of-Sight (NLOS) sensing using single-photon LiDAR to improve visibility and enhance autonomous navigation.
Our method enables mobile robots to "see around corners" by utilizing multi-bounce light information.
arXiv Detail & Related papers (2024-10-04T16:03:13Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects [14.034256001448574]
We propose a vision-based system that learns to predict the potential motions of the parts of a variety of articulated objects.
We deploy an analytical motion planner based on this vector field to achieve a policy that yields maximum articulation.
Results show that our system achieves state-of-the-art performance in both simulated and real-world experiments.
arXiv Detail & Related papers (2022-05-09T15:35:33Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - Multi-Object Tracking with Deep Learning Ensemble for Unmanned Aerial
System Applications [0.0]
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications.
We present a robust object tracking architecture aimed to accommodate for the noise in real-time situations.
We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space.
arXiv Detail & Related papers (2021-10-05T13:50:38Z) - Towards Robust Monocular Visual Odometry for Flying Robots on Planetary
Missions [49.79068659889639]
Ingenuity, that just landed on Mars, will mark the beginning of a new era of exploration unhindered by traversability.
We present an advanced robust monocular odometry algorithm that uses efficient optical flow tracking.
We also present a novel approach to estimate the current risk of scale drift based on a principal component analysis of the relative translation information matrix.
arXiv Detail & Related papers (2021-09-12T12:52:20Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.