CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification
- URL: http://arxiv.org/abs/2110.11829v1
- Date: Fri, 22 Oct 2021 15:05:37 GMT
- Title: CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification
- Authors: Saian Protasov, Pavel Karpyshev, Ivan Kalinov, Pavel Kopanev, Nikita
Mikhailovskiy, Alexander Sedunin, and Dzmitry Tsetserukou
- Abstract summary: We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
- Score: 53.56290185900837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile autonomous robots include numerous sensors for environment perception.
Cameras are an essential tool for robot's localization, navigation, and
obstacle avoidance. To process a large flow of data from the sensors, it is
necessary to optimize algorithms, or to utilize substantial computational
power. In our work, we propose an algorithm for optimizing a neural network for
object detection using preliminary binary frame classification. An autonomous
outdoor mobile robot with 6 rolling-shutter cameras on the perimeter providing
a 360-degree field of view was used as the experimental setup. The obtained
experimental results revealed that the proposed optimization accelerates the
inference time of the neural network in the cases with up to 5 out of 6 cameras
containing target objects.
Related papers
- Enhancing Autonomous Navigation by Imaging Hidden Objects using Single-Photon LiDAR [12.183773707869069]
We present a novel approach that leverages Non-Line-of-Sight (NLOS) sensing using single-photon LiDAR to improve visibility and enhance autonomous navigation.
Our method enables mobile robots to "see around corners" by utilizing multi-bounce light information.
arXiv Detail & Related papers (2024-10-04T16:03:13Z) - Neural Implicit Swept Volume Models for Fast Collision Detection [0.0]
We present an algorithm combining the speed of the deep learning-based signed distance computations with the strong accuracy guarantees of geometric collision checkers.
We validate our approach in simulated and real-world robotic experiments, and demonstrate that it is able to speed up a commercial bin picking application.
arXiv Detail & Related papers (2024-02-23T12:06:48Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
We propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques.
Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically.
The proposed framework achieves real-time 3D object detection on mobile devices with competitive detection performance.
arXiv Detail & Related papers (2020-12-26T19:41:15Z) - High-Speed Robot Navigation using Predicted Occupancy Maps [0.0]
We study algorithmic approaches that allow the robot to predict spaces extending beyond the sensor horizon for robust planning at high speeds.
We accomplish this using a generative neural network trained from real-world data without requiring human annotated labels.
We extend our existing control algorithms to support leveraging the predicted spaces to improve collision-free planning and navigation at high speeds.
arXiv Detail & Related papers (2020-12-22T16:25:12Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z) - Pose Estimation for Robot Manipulators via Keypoint Optimization and
Sim-to-Real Transfer [10.369766652751169]
Keypoint detection is an essential building block for many robotic applications.
Deep learning methods have the ability to detect user-defined keypoints in a marker-less manner.
We propose a new and autonomous way to define the keypoint locations that overcomes these challenges.
arXiv Detail & Related papers (2020-10-15T22:38:37Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
We describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view.
The proposed algorithm for object detection and localization is an empirical modification of YOLOv3, based on indoor experiments in multiple scenarios.
The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot.
arXiv Detail & Related papers (2020-01-20T05:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.